
E�icient k-NN Search of Time Series
in Arbitrary Time Intervals

Master’s Thesis of

Janek Bettinger

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr.-Ing. Klemens Böhm

Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek

Advisor: Jens Willkomm, M.Sc.

September 1, 2017 – February 28, 2018

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, February 28, 2018

. .

(Janek Bettinger)

Abstract

The k nearest neighbors (k-NN) of a time series are the k closest sequences within a

dataset regarding a distance measure. Often, not the entire time series, but only speci�c

time intervals are of interest, e.g., to examine phenomena around special events. While

numerous indexing techniques support the k-NN search of time series, none of them

is designed for an e�cient interval-based search. This work presents the novel index

structure Time Series Envelopes Index Tree (TSEIT), that signi�cantly speeds up the k-NN

search of time series in arbitrary user-de�ned time intervals. The basic idea is to store

groups of similar time series in the leaf nodes of a height-balanced tree. Each group is

represented by an envelope that tightly wraps the group’s time series. Hence, an envelope

is formed by the maximum and the minimum values of the enclosed time series. The

inner nodes hold envelopes that tightly wrap the envelopes of their child nodes. For

a faster index lookup and a reduction of the index size, the envelopes are stored with

reduced dimensionality. The dimensionality is increased with deeper tree levels to improve

the accuracy of distance calculations. The tree structure enables TSEIT to exclude entire

subtrees during the k-NN search without any false dismissals. Consequently, the algorithm

needs to examine only a fraction of all time series. TSEIT uses dynamic time warping

(DTW), which is one of the best distance measures for time series. The evaluation proves

that TSEIT signi�cantly outperforms rival techniques regarding querying e�ort and the

amount of data which it can handle. It also shows that TSEIT is able to index a real-world

dataset with more than 100 million time series e�ortlessly. For a particular set of k-NN

queries on this massive dataset, TSEIT computes the DTW distance to merely 0.006% of

all time series on average.

i

Zusammenfassung

Die k nächsten Nachbarn (KNN) einer Zeitreihe sind die k Sequenzen innerhalb eines

Datensatzes mit der geringsten Distanz zur entsprechenden Zeitreihe. Oftmals sind nicht

die vollständigen Zeitreihen von Interesse, sondern lediglich bestimmte Zeitintervalle;

etwa, um Phänomene rundum besondere Ereignisse zu untersuchen. Zwar gibt es zahlrei-

che Indexstrukturen, die eine KNN-Suche von Zeitreihen ermöglichen, jedoch ist keine

auf eine e�ziente intervallbasierte Suche ausgelegt. Diese Arbeit präsentiert die neu-

artige Indexstruktur „Time Series Envelopes Index Tree“ (TSEIT), welche die KNN-Suche

von Zeitreihen in beliebigen Zeitintervallen signi�kant beschleunigt. Die Grundidee ist,

Gruppen ähnlicher Zeitreihen in den Blattknoten eines höhenbalancierten Baumes zu

speichern. Jede Gruppe wird dabei durch einen Umschlag repräsentiert, der die jeweiligen

Zeitreihen eng umschließt. Ein Umschlag wird also durch die maximalen und minimalen

Werte der enthaltenen Zeitreihen de�niert. Die inneren Baumknoten speichern Umschläge,

welche die Umschläge ihrer jeweiligen Kindknoten eng umschließen. Zur schnelleren

Abfrage und Reduzierung der Indexgröße werden die Umschläge mit verringerter Dimen-

sionalität gespeichert. Dabei ist die Dimensionalität in tieferen Baumebenen höher, um

die Genauigkeit von Distanzberechnungen zu erhöhen. Die Baumstruktur ermöglicht es

TSEIT, ganze Teilbäume bei der KNN-Suche fehlerfrei auszuschließen. Folglich muss der

Suchalgorithmus nur einen Bruchteil aller Zeitreihen genauer untersuchen. TSEIT nutzt

„Dynamic Time Warping“ (DTW), was als das beste Distanzmaß für Zeitreihen gilt. Die

Evaluierung beweist, dass TSEIT konkurrierenden Techniken hinsichtlich Suchaufwand

und Größe der Datensätze, die es verarbeiten kann, deutlich überlegen ist. Es wird gezeigt,

dass TSEIT einen Datensatz mit mehr als 100 Millionen Zeitreihen mühelos indexieren

kann. Bei einer Menge beispielhafter KNN-Anfragen zu diesem riesigen Datensatz, be-

rechnet TSEIT die DTW-Distanz zu durchschnittlich lediglich 0,006% aller Zeitreihen.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 RelatedWork 3

2.1 Whole Matching and Subsequence Matching 3

2.2 Dimensionality Reduction and Indexing of Time Series 4

2.2.1 Transformation-Based Approximation 4

2.2.2 Piecewise Approximation . 5

3 Fundamentals 7

3.1 k-Nearest Neighbors Algorithm . 7

3.2 Dynamic Time Warping . 7

3.2.1 Constraints . 8

3.2.2 Lower Bounds . 9

3.3 TWIST . 9

3.3.1 Data Structure . 10

3.3.2 Index Construction . 10

3.3.3 k-NN Querying . 11

3.3.4 Evaluation . 14

3.4 R-Tree . 14

4 Time Series Envelopes Index Tree 17

4.1 Overview . 17

4.2 Data Structure . 18

4.3 Index Construction . 19

4.3.1 Traversal . 21

4.3.2 Splitting . 23

4.3.3 Reinsertion . 28

4.4 k-NN Querying . 29

4.4.1 Fundamental Query Algorithm . 29

4.4.2 Querying with Segmented Envelopes 32

5 Implementation 35

5.1 Tools and Languages . 35

v

Contents

5.1.1 PostgreSQL . 35

5.1.2 Python . 36

5.2 Architecture . 38

5.3 Database Design . 39

5.4 TSEIT . 40

5.4.1 Performance Optimizations . 40

5.4.2 Con�gurable Parameters . 43

5.4.3 TWIST . 43

5.5 TSEIT Manager . 43

5.6 Technical Evaluation . 46

5.6.1 Static Code Analysis . 46

5.6.2 Pro�ling . 46

6 Evaluation 49

6.1 Setup . 49

6.1.1 Environment . 49

6.1.2 Datasets . 50

6.1.3 k-NN Queries . 51

6.1.4 Default Con�guration . 52

6.2 Metrics . 52

6.2.1 Index and k-NN Metrics . 53

6.2.2 Correlation between Metrics . 53

6.3 Parameter Evaluation . 54

6.3.1 Common Parameter Values . 54

6.3.2 Varying Parameter Values . 55

6.4 Insertion Order . 58

6.5 Insertion Time . 58

6.6 Index Size . 59

6.7 Inserting and Querying 103 Million Time Series 61

6.8 Comparison with TWIST . 63

7 Conclusion and Future Work 65

7.1 Conclusion . 65

7.2 Future Work . 66

Bibliography 69

A Appendix 77

A.1 Con�guration of TSEIT . 77

A.2 Con�guration of PostgreSQL . 79

A.3 Exemplary k-NN Queries . 80

A.3.1 Queries on the 7-Million Dataset . 81

A.3.2 Queries on the 103-Million Dataset 86

vi

List of Figures

3.1 Comparison of the Euclidean and DTW warping paths 8

3.2 Sample data structure of TWIST . 10

3.3 Segmented envelope . 12

3.4 Lower-bound distance for a group of sequences 13

4.1 Schematic illustration of a TSEIT tree . 18

4.2 Comparison of raw and segmented time series and envelopes 19

4.3 Activity diagram of the insertion algorithm 20

4.4 Visualization of InsertionCost . 21

4.5 Overlap between envelopes . 22

4.6 Pseudo-code of k-envelopes . 24

4.7 Schematic illustration of Overlap Split . 26

4.8 Pseudo-code of Overlap Split . 27

4.9 Activity diagram of k-NN querying . 30

4.10 Segmented envelope anlong with a query interval 32

5.1 Activity diagram of the insertion and index update process 38

5.2 Database schema . 39

5.3 Examplary vector-based operations . 41

5.4 Abandoning repeated conditionals . 42

5.5 Plot of a small TSEIT tree . 44

5.6 Example concerning analyze_config_values 46

5.7 Pro�ling the insertion process . 47

6.1 Distribution of time series in the 7-million dataset 51

6.2 Default con�guration . 52

6.3 Correlation between index metrics and k-NN metrics 53

6.4 Table with evaluation results for di�erent con�gurations 57

6.5 E�ects of the insertion order . 58

6.6 Insertion time and index size of TSEIT and TWIST 59

6.7 Indexing 7 million time series . 60

6.8 Indexing and querying more than 100 million time series 62

6.9 Indexing 2.8 million time series with TWIST 64

6.10 Comparison of the insertion rate of TSEIT and TWIST 64

vii

List of Equations

3.1 Di,j — DTW distance matrix . 7

3.2 LB_Kim(X ,Y) — lower bound for the distance between two sequences 9

3.3 E — envelope wrapping a set of time series . 10

3.4 InsertionCost (X ,E) — cost function of TWIST 11

3.5 XT — segmented sequence . 12

3.6 ET — segmented envelope . 12

4.1 UpdateEnvelope(ET ,XT) — update a segm. envelope by a segm. sequence . . 20

4.2 AreaAfterInsertion(ET ,XT) — cost function 21

4.3 InsertionCost(ET ,XT) — cost function . 22

4.4 Overlap(ET ,XT) — overlap between a segm. envelope and a segm. sequence . 22

4.5 UpdateEnvelope(E,X) — update an envelope by a sequence 25

4.6 CentralSequence(E) — central sequence of an envelope 25

4.7 CombineValues (ET) — combine consecutive values of an envelope 29

4.8 X [a:b] — subsequence of X . 29

4.9 LBG (XT ,ET) — lower bound for the distance between two envelopes 33

ix

1 Introduction

Most data is inherently temporal and thus representable in the form of a time series.

Nowadays, time series arise in almost every domain like industry or science in vast

quantities. A time series might describe measured sensor values such as the temperature

or energy usage over time. In medicine, the number of heartbeats or the oscillation of a

brainwave can be represented as a time series. Further examples are sequences of stock

prices or election polls at successive points in time.

Datasets themselves usually have no explicit value, but only the insights about real-world

phenomena they reveal by analysis. Instead of entire time series, often only speci�c time

intervals are of interest. Concerning the previous examples, this might be the temperature

during a particular month or the energy usage between Christmas and New Year. Worth

analyzing might also be the period just before a special event such as a heart attack

or epileptic seizure, a market collapse or voting day. Moreover, as time series usually

become longer over time due to continuous data acquisition, only the latest period might

be appropriate for analysis. Another scenario could be the examination of separate time

intervals to comprehend changes.

A basic operation in data analysis is obtaining the k nearest neighbors (k-NN) of a given

data object. The neighbors are those data objects that are closest to the query object

concerning a distance measure. While the Euclidean distance is often used, the dynamic

time warping (DTW) distance usually performs better for time series. The k-NN algorithm

can be used for classi�cation, clustering or regression, as well as for exploratory data

analysis.

Usually, spatial index structures allow e�cient k-NN querying without the need for a

sequential scan through all data. Especially for time series, numerous techniques for

indexing and querying have been developed in recent decades. However, they either

operate on full time series only or retrieve similar subsequences at arbitrary positions

within other time series. These methods are, however, not suitable for a k-NN search

in speci�c time intervals. Most related approaches transform time series in a way that

does not allow interval-based querying while guaranteeing the correctness of the result.

Furthermore, they either require standardized value ranges or impose restrictions on the

search intervals. Otherwise, they scale poorly with increasing data size.

This work proposes a novel index structure that allows an e�cient k-NN search of time

series in arbitrary time intervals. It guarantees an exact search without any restrictions.

The main idea is to wrap groups of similar time series by so-called envelopes, which are

conceptually comparable to minimum bounding rectangles. The envelopes themselves are

1

1 Introduction

stored in a height-balanced tree structure, where the envelope of an inner node spans those

of its child nodes. For a k-NN search given a query time series and a time interval, the

index tree is traversed from the root node to �nd promising envelopes and time series at

the leaf level. At each level, the distance between the query time series and each envelope

is calculated to decide which subtrees to follow. A valuable property is that the distance to

an envelope lower bounds the distance to each of the time series inside the envelope. This

allows omitting entire subtrees below envelopes with a distance larger than the minimum

distance so far, while still guaranteeing no false dismissals. Thus, the number of time

series that need to be examined can be signi�cantly reduced to a fraction of the total time

series count. Experiments show that the proposed index structure can e�ciently index

and query more than 100 million time series, even for the computationally expensive DTW

distance.

The remainder of this work is organized as follows. Chapter 2 presents related work

including approaches that did not completely ful�ll our demands. Chapter 3 introduces the

fundamental concepts and techniques this work is based on. In Chapter 4, the novel index

structure including the creation and query algorithm is explained, before implementation

details are revealed in Chapter 5. Chapter 6 evaluates the proposed method using real-world

datasets. Finally, Chapter 7 summarizes this work and suggests future work.

2

2 RelatedWork

This chapter introduces related and proven techniques for indexing and searching time

series. It explains that current approaches are conceptually incompatible to interval-based

querying, as they either work on whole time series or �xed-sized intervals. Most of the

dimensionality reduction and indexing techniques introduced beyond, do not �t into the

scenario of this work either.

2.1 Whole Matching and Subsequence Matching

Research mainly focuses on two di�erent problems regarding similarity search of time

series. While whole matching [YJF98; KPC01; SYF05; KR05; SH12] compares entire time

series of equal length, subsequence matching [FRM94; KP99; KS01; AiJ+02; LPK07; Du+08;

Rak+12; XC13; Gil+15] retrieves similar subsequences contained at arbitrary positions in

other time series.

Subsequence matching is often converted to a whole matching problem by moving a

sliding window over each time series and materializing the underlying subsequence. For

example, a more or less individual index might be built for each position and size of the

sliding window. However, this does not scale well with increasing number or length of

the time series. Moreover, often not every possible window size is considered to keep the

index size manageable.

As subsequence matching is more general than an interval-based search, it seems natural

to use those techniques for the latter. However, the runtime and space complexity is too

high to be applicable for large datasets. The high-performance and scalable querying

approach proposed in [Rak+12], on the other hand, requires the standardization of the

value range, making it less appealing for this work. Furthermore, any restrictions on the

window size or interval for the k-NN search are not desired either.

An alternative application is the interval-based similarity search, where the target time

intervals are �xed, which is similar to this work. While it is not that present yet, it gains in

importance due to ever-increasing data acquisition times and longer time series. [Aßf+07]

proposes an interval-based technique which, however, requires a costly transformation

of each time series before indexing. Since it was evaluated with datasets holding a few

thousand time series only, it does not seem to be suitable for processing massive datasets.

3

2 Related Work

2.2 Dimensionality Reduction and Indexing of Time Series

A time series of length n can be considered as a point in an n-dimensional space. However,

multidimensional index structures or spatial access methods such as the R-tree [Gut84]

su�er from the so-called Curse of Dimensionality: The number of time series that need to

be examined grows exponentially with the number of dimensions, i.e., the length of the

time series [Sch15; Spr91]. Usually, spatial index structures already degenerate with 10–20

dimensions [WSB98; AFS93]. Therefore, it is common practice to reduce the number of

dimensions by approximating the time series in the �rst place. The reduced data can then

be stored in a multidimensional index structure.

An established framework for this procedure is the Generic Multimedia Indexing Method
(GEMINI) [FRM94; Fal96]. It requires a distance function and a feature-extraction or

dimensionality reduction method, together with a distance function in the feature space

that lower-bounds the actual distance. Most of the techniques introduced in the following

implicitly follow the GEMINI concept.

2.2.1 Transformation-Based Approximation

[AFS93] and [FRM94] propose an indexing method that uses Discrete Fourier Transform
(DFT) to map time series to the frequency domain. The n-point DFT [OS75] of a signal or

time series is an equally long sequence of complex numbers, called the Fourier coe�cients.

Each coe�cient describes the share of a frequency averaged over the entire duration of the

signal, where the �rst coe�cients quantify low frequencies. The real part of a coe�cient

gives the amplitude of a cosine wave, while the imaginary part is the amplitude of a sine

wave. An essential property of the DFT is that the Euclidean distance between two signals

in the frequency domain is equivalent to their distance in the time domain. Since the

values of most real-world signals depend on their neighbors, they are not white noise.

Therefore, these signals have only a few strong frequencies and Fourier coe�cients. Thus,

keeping only the �rst c coe�cients turns each time series into a point (with a real and an

imaginary part) in a 2c-dimensional space without great information loss. Experiments

show that less than six coe�cients are already adequate to calculate a lower bound for the

true distance in the time domain. Having reduced the dimensionality, the time series can

be indexed well. A symbolic representation for time series based on DFT together with a

modi�ed pre�x tree for indexing is proposed in [SH12].

While DFT gives frequencies describing the general shape of a time series, it does not

preserve any temporal information due to its periodic and in�nite basis functions. In

contrast, the Discrete Wavelet Transform (DWT) [Gra95] represents a time series as a linear

combination of so-called wavelets, which are localized in frequency and time domain.

Localized in time means that the function has a non-zero amplitude in only a small time

interval. For time series, the most common wavelet basis function is the Haar wavelet,

which is a combination of two rectangular functions [Haa10]. The Haar transform can also

be considered as iteratively averaging adjacent values of the original time series. Like for

4

2.2 Dimensionality Reduction and Indexing of Time Series

DFT, it is su�cient to index only the �rst coe�cients. [KA99] �rst applies DWT with Haar

wavelets to time series and states that it outperforms indexing with Fourier transform

concerning complexity and the performance of similarity search.

DFT and DWT both transform single data objects independently from the rest of the

dataset. Single Value Decomposition (SVD) [KJF97], in contrast, is a global transformation

examining the entire dataset. For dimensionality reduction and indexing, only the overall

most important axis or principal components are kept. While the reconstruction error is

smaller than for linear transformations like DFT and DWT, the computational e�ort is

comparatively high. Furthermore, since the index usually needs to be rebuilt whenever a

new time series is inserted, SVD is unfeasible for massive datasets.

The transformation methods introduced above have in common that they are not directly

applicable for indexing time series for an interval-based k-NN search. As they approximate

time series, �ne structures of high frequency get lost. This is no problem for similarity

search on entire time series, as the distance measures on the approximations underestimate

the true distance. However, two time series might have a far distance as a whole and

therefore a comparatively large approximated distance—but they might be very close

in some arbitrary small time intervals. Moreover, for raw subsequences, the frequency

spectrum might strongly di�er from the one of the entire sequence. This is especially

not covered anymore after discarding most coe�cients for dimensionality reduction.

Furthermore, there is no known way to obtain the frequencies of a subsequence from the

frequency spectrum of the entire sequence without performing an inverse DFT in the

�rst place. Similar issues argue against the use of SVD in this work. Also with DWT, it is

di�cult to deal with peaks in subsequences due to the averaging of raw values. Moreover,

DWT requires the length of the time series to be a power of two. While it is possible to

use padding to �ll sequences that are too short, this is not optimal.

2.2.2 Piecewise Approximation

Piecewise approximation methods divide a time series into segments and apply a function

on each segment to de�ne its value.

[YF00] and [Keo+01] suggest using segments of equal length and representing each one

by its mean value. While former authors call this approach Segmented Means, the term

Piecewise Aggregate Approximation (PAA) by the latter is prevailing in literature. PAA can

alternatively be interpreted as a linear combination of di�erently shifted box functions.

[Lin+07] introduces the symbolic representation Symbolic Aggregate Approximation (SAX)

on top of PAA. SAX �rst standardizes the time series to a mean value of zero and a standard

deviation of one, before it translates them to the PAA representation. The coe�cients

of PAA are then mapped to a small alphabet of symbols such as a, b, c, whereby the

discretization breakpoints are chosen so that the symbols are evenly distributed. The

concatenation of symbols representing a sequence is called word. An indexable SAX (iSAX)

is presented in [SK08; Cam+10; Cam+14]. Instead of alphanumeric characters, iSAX uses

binary numbers as symbols, which allows deriving a word of reduced cardinality by simply

5

2 Related Work

removing trailing bits. Raw time series that share the same iSAX representation are stored

in a text �le that has the particular iSAX word encoded as the �le name. If a �le (e.g.,

representing 〈10, 11, 10〉) exceeds the maximum size allowed, it is split into two �les each

having an additional bit in its iSAX word (e.g., 〈100, 11, 10〉 and 〈101, 11, 10〉). Adaptive
Data Series (ADS, ADS+) indexing [ZIP14; ZIP16] suggests a lazy index creation on top of

the iSAX representation. To avoid a time-consuming initial index creation, the index is

built and re�ned iteratively on query time.

Adaptive Piecewise Constant Approximation (APCA) [Cha+02] extends PAA by using vary-

ing segment lengths. Areas of high activity are resolved �ner to reduce the reconstruction

error. The extended APCA (EAPCA) representation [Wan+13] additionally includes the

standard deviation besides the mean value per segment. Thus, it is possible to de�ne not

only a lower bound but also an upper bound for the true distance. An index structure

based on the EAPCA representation is the Dynamic Splitting Tree (DSTree) [Wan+13]. In

a DSTree each node holds the minimum and maximum mean and standard deviation of

the subtree below. Whenever a leaf node holding raw time series exceeds the maximum

capacity, it is split in either horizontal or vertical direction. A horizontal split partitions a

set of time series by either their mean value or their standard deviation. Vertical splitting,

in contrast, divides a segment into two and assigns the time series according to their mean

value in the left subsegment to a new leaf.

The PAA-based representations and indexing techniques introduced above have some

drawbacks regarding similarity search within intervals. As PAA represents segments by

their mean value, it is prone to false dismissals, when peaks or outliers lie within the

query time interval. Two time series might be wide apart in a segment regarding their

mean values, but be close if the query interval within that segment contains a peak in one

time series. This might result in false dismissals if the candidate time series is discarded

only based on the mean values. Furthermore, the z-standardization performed by SAX

manipulates the overall value range so that it is not possible to di�erentiate time series

with the same trend but di�erent vertical intercepts. For example, two horizontal lines at

−10 and 42 are both mapped to a line at zero. As long as only the course of time series

is of interest, this is not a disadvantage. However, in this work, the k-NN time series are

supposed to be obtained in the original value range.

Instead of representing segments by their mean value, they can be de�ned by straight lines

[SZ96; Keo97]. However, it seems like such approaches have not been pursued in research.

They further su�er from the same problems regarding peaks as PAA-based techniques.

[KS10] proposes the concept of envelopes using the minimum and the maximum value of

each segment as its representative. Thanks to this, peaks in time series get not lost and can

be taken into account for querying. Likewise, the index structure Time Warping in Indexed
Sequential Structure (TWIST) [NRR10] introduced in the same year is based on envelopes.

TWIST calculates envelopes for groups of time series and stores them in a simple index

structure for a k-NN search under DTW. To fasten query processing, the envelopes are

segmented like in [KS10]. As this work adopts several concepts introduced by TWIST,

including a lower-bound function for the distance to the time series inside an envelope,

Section 3.3 on page 9 introduces it more detailed.

6

3 Fundamentals

This chapter �rst introduces the k-nearest neighbor search and the distance measure

dynamic time warping. It motivates the need for an e�cient k-NN algorithm under DTW

using lower-bound techniques and presents the index structures TWIST and R-tree.

3.1 k-Nearest Neighbors Algorithm

The k-nearest neighbors (k-NN) algorithm is a fundamental and simple similarity search

method that is usually used for classi�cation or regression [FH51; CH67]. Given an

input object, its k closest neighbors in regard to a distance function are determined.

For classi�cation, the object is assigned the class of the majority of its neighbors; for

regression, their average value. The Euclidean distance is commonly used as distance

measure; however, more sophisticated and domain-speci�c ones are applicable, too.

3.2 Dynamic TimeWarping

Dynamic time warping (DTW) is one of the best similarity measures for sequences, as it

is less sensitive to typical transformations like shifting and scaling than other distance

measures [YC15; SA14]. Initially developed for speech recognition [SC78], it was soon

applied to time series [BC94]. In contrast to the Euclidean distance, it does not perform a

one-to-one point comparison but a many-to-many comparison [Cas+12], as visualized in

Figure 3.1a and 3.1b.

DTW aligns two sequences X = 〈x1, . . . ,xm〉 and Y = 〈y1, . . . ,yn〉 in the temporal domain

so that the total accumulated cost or distance is minimal. For this purpose, a distance matrix

D is calculated, where each cell Di,j corresponds to the minimum cumulative distance

between the sequence elements xi and yj .

The distance matrix D of size (m + 1) × (n + 1) can be computed by dynamic programming

recursively applying

Di,j = d (xi ,yj) +min(Di,j−1,Di−1,j ,Di−1,j−1) (3.1)

for i = 1 . . .m and j = 1 . . .n, with the lengths m and n of the two sequences. D0,0 is

initialized with 0, whereas the other cells are initially set to ∞. d (xi ,yj) is the cost of

matching two sequence elements xi and yj and is usually calculated with the squared

7

3 Fundamentals

1 2 3 4 5 6 7

X

Y

(a) Euclidean distance

1 2 3 4 5 6 7

X

Y

(b)DTW distance

1

1

2

2

3

3

4

4

5

5

6

6

7

7

X

Y
(c)DTW distance matrix

Figure 3.1 Given two sequences X and Y , (a) shows the warping path of the Euclidean distance,

(b) shows a more suitable warping path by DTW, (c) shows the warping path in the

DTW distance matrix constrained by a Sokoe-Chiba band (graphics based on [LY14]).

Euclidean distance (xi − yj)
2

[NRR10]. The �nal DTW distance corresponds to the total

accumulated cost, i.e., DTW (X ,Y) = Dm,n. Some publications �nally compute thep-th root;

hence, in this case,DTW (X ,Y) = p
√
Dm,n (withp = 2, ifd is the Euclidean distance) [NRR10].

Optionally, the optimal warping path 〈(i1, j1), . . . , (iw , jw)〉 (withmax(m,n) ≤ w ≤ n+m−2
[LY14]) can be obtained by tracing back in the matrix choosing the cell with the lowest

accumulated cost in each step, as visualized in Figure 3.1c .

DTW is re�exive and symmetric, but not transitive, as it does not satisfy the triangular

inequality DTW (X ,Y) + DTW (Y ,Z) ≥ DTW (X ,Z). Latter property can cause false

dismissals for many index structures including most spatial access methods and metric-

based trees. Only a costly sequential scan through all sequences can avoid this [YJF98].

3.2.1 Constraints

The canonical DTW has a high, quadratic computational complexity of O (m × n) for

matching two sequences of length m and n. Furthermore, the alignment might match

sequence elements that are wide apart in time, which usually degrades the results of a

similarity search. To overcome these issues, it is common to constrain the computation

of the matrix. The so-called Sakoe-Chiba band [SC78] de�nes a warping window 0 ≤

|ik − jk | ≤ ω ≤ min(m,n) so that the warping path is at each position k allowed to be at

most ω beyond from the distance matrix’s main diagonal (in both horizontal and vertical

direction). This is illustrated in Figure 3.1c. As a result, fewer matrix cells have to be

computed and the time di�erence between two aligned sequence elements does not exceed

the limit. [RK04] presents a general constraint model that can represent several distance

measures such as the Euclidean distance or DTW, without or together with various bands

such as the Sakoe-Chiba band or the Itakura parallelogram [Ita75].

8

3.3 TWIST

3.2.2 Lower Bounds

To speed up the iterative k-NN search of time series under DTW, one can make use of one

or more lower-bound functions for pruning o� time series that cannot be the best match. A

lower-bound function LB (X ,Y) returns an estimated value less than or equal to the exact

value DTW (X ,Y). Besides, it satis�es—in contrast to DTW—the triangular inequality. If

the lower-bound distance of a time series is already larger than the best-so-far distance in

the nearest neighbor search, the time series can be omitted since it is guaranteed that its

exact distance is not smaller. Only if the lower bound is smaller, the exact DTW has to be

calculated.

A lower-bound distance should be much faster to compute than the exact DTW. To

ensure pruning of many time series, it is desirable that the lower bound is tight, in other

words, that it is large and close to the exact value. The tightness can be computed by

LB (X ,Y)/DTW (X ,Y) which gives a value in [0, 1] where 1 is best [LY14].

[YJF98] proposes the �rst lower-bound technique for DTW, usually referred to as LB_Yi.

This lower bound is the sum of the distances between the maximum of one sequence and

those elements of the other sequence that are greater than this maximum, plus vice versa

the summed distances for elements smaller than the minimum.

A fast to compute but less e�ective lower bound regarding tightness and pruning power is

LB_Kim [KPC01]. For two sequences X and Y of length n, it is de�ned as the maximum of

the distances between the sequences’ �rst, last, maximum, and minimum value:

LB_Kim(X ,Y) = max

��x1 − y1��
��xn − yn��
��max(x1, . . . ,xn) −max(y1, . . . ,yn)��
��min(x1, . . . ,xn) −min(y1, . . . ,yn)��

(3.2)

Further lower-bound functions, as well as a comparison, can be found in [NB14; LY14].

3.3 TWIST

Time Warping in Indexed Sequential Structure (TWIST) is an index structure for time series

that allows a k-NN search under DTW with no false dismissals guaranteed [NRR10]. It

stores groups of similar time series and de�nes a lower-bound function for the distance

between a query sequence and all time series of a group. For a k-NN search, this allows

not only the pruning of single time series but of entire groups reducing runtime and

computational costs.

9

3 Fundamentals

Envelope Sequence File (ESF)

Data Sequence Files (DFSs)
Group of sequences

Envelope

Pointer

Figure 3.2 A sample data structure of TWIST (graphic by [NRR10])

3.3.1 Data Structure

A group of similar time series is wrapped by a so-called envelope that is de�ned by

the minimum and maximum value of the group’s time series at each time step. Hence,

an envelope consists of a lower and an upper sequence. Conceptually, an envelope is

comparable to a minimum bounding rectangle as known from R-trees (cf. Section 3.4 on

page 14).

An envelope E with a lower sequence El and an upper sequence Eu , wrapping X, a set of

time series of length n, is de�ned as follows:

E = {El ,Eu } (3.3)

where El =
〈
. . . ,min

X∈X
(xi), . . .

〉
=

〈
. . . , el ,i , . . .

〉
with 1 ≤ i ≤ n

Eu =
〈
. . . ,max

X∈X
(xi), . . .

〉
=

〈
. . . , eu,i , . . .

〉
As shown in Figure 3.2, each envelope is stored in a �at index structure called envelope
sequence �le (ESF) together with a pointer to a so-called data sequence �le (DSF) holding

the grouped raw time series.

3.3.2 Index Construction

The following sections describe the insertion of time series into the index structure TWIST,

as well as their deletion from the index.

3.3.2.1 Insertion

TWIST inserts a time series into the envelope for which the insertion cost is minimal and

updates the envelope’s lower and upper bound accordingly. Once an envelope or rather its

10

3.3 TWIST

DSF contains more time series than allowed by the maximum page size, it is split into two

DSFs, which are stored in the ESF again. The maximum page size is the only user-de�ned

parameter.

The cost of inserting a time series X = 〈x1, . . . ,xn〉 into an envelope E with a lower

sequence El = 〈el ,1, . . . , el ,n〉 and an upper sequence Eu = 〈eu,1, . . . , eu,n〉 is calculated from

the envelope area after the insertion and the associated area enlargement:

InsertionCost (X ,E) = p

√√√√√√√√ n∑
i=1

|xi − el ,i |
p

if xi > eu,i

|eu,i − xi |
p

if xi < el ,i

0 otherwise

(3.4)

p is the dimension of Lp norms and usually p = 2.

For splitting a DSF if it exceeds the maximum page size, TWIST adopts k-means clustering

[Mac67] with k = 2 and the Euclidean distance. It aims to create two groups of time series

so that both new envelopes are tight and overlap only slightly. Instead of k-means, other

algorithms such as in R-tree [Gut84] or R*-tree [Bec+90] can be used; however, they are

computational more complex.

3.3.2.2 Deletion

To delete a time series from the index, it is deleted from the containing DSF. Moreover, the

ESF needs to be adapted, too, so that the envelope remains as tight as possible. However,

as the minimum and maximum functions are not self-maintainable concerning deletions

[XE00], all remaining time series of the DSF need to be accessed to recalculate the envelope.

Besides an eager deletion algorithm that recalculates the envelope immediately, TWIST

alternatively provides a lazy algorithm that does not update the envelope at all. The lazy

algorithm is much faster and, nevertheless, does not lead to false dismissals during the

k-NN search. Hence, the trade-o� between both deletion algorithms is runtime versus

tightness of the envelope.

3.3.3 k-NN Querying

When a k-NN query is issued, TWIST calculates lower-bound distances to each envelope.

If the lower-bound distance to an envelope is larger than the current best-so-far distance,

it is pruned, as it cannot contain any target time series. The best-so-far distance is the

exact or a lower-bound distance to the (candidate) k-nearest neighbor time series. By

pruning one single envelope, a large number of candidate time series is omitted while

still guaranteeing no false dismissals. To further improve the runtime, the lower bound is

calculated with a segmented representation of both the query time series and the enclosing

envelope, starting with a coarse segmentation on the time axis. As long as the lower-

bound distance is smaller or equal to the best-so-far distance, the segmentation is re�ned

iteratively to increase the accuracy of the estimate. Once the segmentation has reached

the �nest resolution, all time series of the current envelope are accessed.

11

3 Fundamentals

T

s e

T

s e

Figure 3.3 Segmented envelope ET with di�erent segment lengths T . The dashed lines illustrate

the lower (El) and upper sequence (Eu) of the envelope E wrapping a group of time

series (gray lines). The solid horizontal lines illustrate the lower (ETl) and upper

sequence (ETu) of the segmented envelope.

3.3.3.1 Segmentation

Segmentation of a time series or envelope is a simple dimensionality reduction technique

and illustrated in Figure 3.3. The given time series X = 〈x1, . . . ,xn〉 is �rst split into

adjacent time intervals—called segments—of length T . Solely the last interval might be

of smaller length. The segmented time series XT is �nally composed of two sequences,

where the lower sequence XT
l

contains the minimum value within each interval and the

upper sequence XTu holds the maximum values:

XT =
{
XTl ,X

T
u

}
(3.5)

where XTl = 〈. . . ,min(xs , . . . ,xe), . . .〉 =
〈
. . . ,xTl ,i , . . .

〉
XTu = 〈. . . ,max(xs , . . . ,xe), . . .〉 =

〈
. . . ,xTu,i , . . .

〉
s = (i − 1) ·T + 1 with 1 ≤ i ≤ dn/T e

e = min(i ·T ,n)

For segmenting the envelope E = {El ,Eu } = {〈el ,1, . . . , el ,n〉, 〈eu,1, . . . , eu,n〉}, the minimum

values of its lower sequence intervals are used, together with the maximum values of its

upper sequence intervals. Hence, the segmented representation ET is de�ned as follows:

ET =
{
ETl ,E

T
u

}
(3.6)

where ETl =
〈
. . . ,min(el ,s , . . . , el ,e), . . .

〉
=

〈
. . . , eTl ,i , . . .

〉
ETu =

〈
. . . ,max(eu,s , . . . , eu,e), . . .

〉
=

〈
. . . , eTu,i , . . .

〉
3.3.3.2 Lower-Bound Distance for a Group of Sequences

TWIST introduces a lower-bound function for the true DTW distance between a query

sequence and a group of time series enclosed by an envelope. It is a fundamental concept

12

3.3 TWIST

T

ETu

ET
l

XTu

XT
l

Figure 3.4 Visualization of the lower-bound distance for a group of sequences and a query

sequence. The black boxes (��) represent a segmented envelope ET , while the blue

boxes (��) represent a segmented query sequence X T . The green areas (| |) represent

the distance d between a query segment and an envelope segment.

and crucial for k-NN querying. The lower bound works on segmented representations

and is based on a lower-bound function for two segmented sequences [SYF05].

The equation for the lower-bound distance LBG (XT ,ET) between a segmented query

sequence XT and a segmented envelope ET is similar to the original DTW function intro-

duced in Section 3.2 on page 7. Again, a distance matrix D is calculated as in Equation 3.1.

However, instead of using the Euclidean distance between two sequence elements, another

local cost function d is applied. Now, d gives the distance between a query segment and

an envelope segment. E�ectively, d is a lower bound for the distance between the query

and all time series in the envelope within the interval covered by the segment.

d
(
XTi ,E

T
j

)
= d

({
xTl ,i ,x

T
u,i

}
,

{
eTl ,i , e

T
u,i

})
(3.7)

= T ·

���x
T
l ,i
− eTu,j

���
p

if xT
l ,i
> eTu,j���e

T
l ,j
− xTu,i

���
p

if eT
l ,j
> xTu,i

0 otherwise

The lower bound LBG is illustrated in Figure 3.4. Besides the just introduced LBG, TWIST

additionally proposes an alternative lower-bound function LBGK that makes use of a global

constraint. As LBGK is not used for this work, it is omitted in this chapter.

3.3.3.3 k-NN Query

The k-NN search starts with an initial estimated best-so-far distance. The best-so-far

distance is a lower-bound distance to the k-nearest neighbor; hence, not necessarily to the

closest neighbor. For this purpose, TWIST calculates the LBG lower-bound distance to

each envelope using a maximal segment length T . Although not mentioned in [NRR10], if

the query sequence was indexed, the LBG distance equals to zero for the envelope that

contains the sequence. Since a best-so-far distance of zero is no advantage, the initialization

can be omitted in this case.

13

3 Fundamentals

Afterward, the LBG lower bound is repeatedly calculated for each envelope, as long as it

does not exceed the current best-so-far distance. After each iteration, the segment length

is reduced, and the LBG distance is recalculated with a �ner representation of the query

sequence and the current envelope. Since [NRR10] does not explicitly de�ne how to reduce

the segment length, it is assumed that it is halved. Reducing the segment length makes

the lower bound larger and thus tighter. Once the lower-bound distance is larger than the

best-so-far distance, the segment length is reset to the initial T , and the current envelope

is omitted—together with all time series it holds since they cannot be a k-NN.

If the segments have reached their minimum length, and the LBG is still smaller than

the best-so-far distance, all time series of the current envelope are accessed. For each

raw time series, a lower-bound distance is calculated, e.g., using LB_Yi or LB_Kim as

described in Section 3.2.2 on page 9. If also this lower bound is smaller than the current

best-so-far distance, the true DTW distance is calculated. Otherwise, the next time series

is examined.

When also the true DTW distance is smaller than the best-so-far distance, the time series

is pushed onto a max-heap. The max-heap holds the k current result sequences, where the

�rst one always has the largest distance, and thus is the k-nearest neighbor. Subsequently,

the �rst element is removed from the max-heap to make sure that it does not contain more

than k time series. Finally, the best-so-far distance is set to the exact distance of the new

�rst time series of the max-heap.

A pseudo-code describing this algorithm is listed in the original publication [NRR10].

3.3.4 Evaluation

Unlike most multidimensional index structures, the index structure TWIST can be seen

as a tree with only one level. Therefore, all nodes need to be examined for choosing the

best envelope for inserting a time series. This gives a runtime complexity of O (N) for a

dataset size of N . In contrast, most spatial index structures have an average complexity

in O (logN) for updates. Experiments con�rm that the performance of TWIST already

drops drastically after inserting hundred-thousands of time series. Not only for inserts

but also for k-NN queries it is necessary to access all envelopes, even though distances

are calculated on segmented representations. However, as the envelope’s segments are

not materialized, further computations are required for segmentation—at least one per

envelope and often even more frequently for smaller segment lengths. The novel index

structure in this work, in contrast, does not su�er from these weaknesses that make TWIST

unable to handle vast amounts of data.

3.4 R-Tree

The R-tree [Gut84] is together with its variants the probably most popular index structure

for multidimensional data, such as spatial objects like points or polygons [Man+06]. The

14

3.4 R-Tree

height-balanced tree is based on the B
+

-tree [BM70; Com79] and corresponds to a hierarchy

of d-dimensional minimum bounding rectangles (MBR). An MBR is the smallest rectangle

that tightly bounds its content. In contrast to structures like the k-d-tree [Ben75], the

MBRs might overlap. An R-tree enables a straightforward search for all data objects that

are intersected or overlapped by a given query rectangle. Besides these so-called range

queries, k-NN searches are applicable as well [RKV95; HS99].

An R-tree of order (m,M) is characterized as follows. Each node, except the root, contains

betweenm and M/2 entries, where an entry is composed of an MBR and a child pointer.

For leave nodes, the pointer refers to a single data object. The root node needs to contain

at least two entries unless it is a leaf, in which case it may hold nothing or a single entry.

To insert a data object, the R-tree is traversed starting with the root node to �nd an

appropriate leaf node. At each level, the node, whose MBR requires the minimum area

enlargement to cover the new object, is chosen. If the leaf node found does not already

contain M/2 entries, the data object is inserted, and the MBRs of all parental nodes up to

the root are updated accordingly. Otherwise, the leaf node is split into two new leaf nodes,

whereupon the object is inserted, and the MBRs are updated likewise. Whenever a leaf

node was split, its parent might over�ow and be split as well. Consequently, the splits

might propagate upwards until a new root node is created.

While the R-tree especially tries to minimize the area of each MBR, the R*-tree [Bec+90]

introduces further optimization criteria including the minimization of the overlap between

the MBRs. On insertion, the R*-tree chooses the leaf node whose MBR enlargement leads

to the minimum overlap among the sibling nodes. If a leaf node already contains the

maximum number of objects, it is not split in the �rst place. Instead, the leave node’s outer

30% of data objects are deleted and reinserted into the tree. While reinsertion is a kind of

rebalancing and restructuring, it is a costly operation and therefore applied only once per

tree level.

15

4 Time Series Envelopes Index Tree

This chapter unveils the novel index structure Time Series Envelopes Index Tree (TSEIT
1
)

that allows an e�cient interval-based k-NN search of time series.

After an overview of the fundamental concepts of TSEIT, the data structure is introduced

in detail. The index construction, including traversal policies and splitting algorithms, is

explained subsequently, before the index-based k-NN query algorithm is presented.

4.1 Overview

The basic idea of TSEIT is to store groups of time series in the leaf nodes of a height-

balanced tree. An exemplary TSEIT tree is illustrated in Figure 4.1. Each group is rep-

resented by an envelope that tightly wraps the time series. Hence, an envelope consists

of an upper sequence and a lower sequence. The upper one is de�ned by the maximum

values of the enclosed time series, while the lower sequence is de�ned by the minimum

values. Each inner node holds an envelope that tightly wraps the envelopes of its child

nodes. Whenever a leaf node contains more time series than it is allowed to, it is either

split into two nodes, or some of its time series are reinserted into the tree.

To save runtime and storage space, the envelopes are by default stored with reduced

dimensionality by segmenting them as introduced in Section 3.3.1 on page 10. In order

to improve the accuracy of distance calculations, the number of segments per envelope

increases in deeper tree levels

For k-NN querying, the distance between a query time series and an envelope is a lower

bound of the true distance to any of the enclosed time series. Hence, if the distance to an

envelope is larger than the distance to the current k-NN, the enclosed time series have the

same or an even larger distance to the query time series. In this case, the envelope cannot

contain any k-NN time series. This allows omitting the entire subtree below the envelope

without false dismissals. Thanks to this, TSEIT needs to calculate the costly DTW distance

to only a fraction of all time series. As an envelope preserves the extrema of its time series,

the distance calculation and thus the k-NN search works on arbitrary time intervals.

The optimal TSEIT tree is compact, holding well-�lled leaf envelopes of a small area that

overlap only slightly. This ensures low traversal cost and reduces the chance that a query

time series hits many envelopes. However, some conditions contradict each other: storing

only a few time series in each envelope minimizes the average envelope area, but degrades

1 TSEIT is pronounced [tsait], like the German word Zeit for time

17

4 TSEIT

inner node

leaf node leaf node

pointers to raw time series

Figure 4.1 Schematic illustration of a TSEIT tree with three nodes. The envelope of the inner node

is formed by the envelopes of the two leaf nodes, each referencing a set of raw time

series. The nodes hold segmented envelopes where the segment length of a parent node

is twice the segment length of its child nodes. In this illustration, the raw envelopes

and time series are depicted for a better understanding only.

the query runtime due to an increased tree size, on the other hand. TSEIT balances this by

a sophisticated and tailored index creation algorithm.

4.2 Data Structure

The TSEIT tree is always height-balanced and thus its leaf nodes have the same depth. Its

topology and the way it is balanced is based on concepts of the R-tree. TSEIT consists

of inner nodes and leaf nodes each holding an envelope. Leaf nodes additionally store a

set of pointers to raw time series. The envelopes are usually segmented and wrap either

the envelopes of the child nodes or, in case of leaf nodes, a set of time series. Figure 4.2

compares the di�erent data representations.

Each leaf node holds pointers to at least lmin ≥ 1 and at most lmax ≥ 2lmin raw time series,

and each inner node has between cmin ≥ 2 and cmax ≥ 2cmin − 1 child nodes. The indexed

time series have the same length.

In the default con�guration, the envelopes are stored with reduced dimensionality by

segmenting them on the time axis (cf. Section 3.3.3.1 on page 12). The segments have the

length Tmin ≥ 1 for leaf-level envelopes, while the length doubles with each level up to

the root node. Doubling the segment length halves the length of the resulting sequences,

which reduces the accuracy of lower-bound distance calculations, but saves storage and

runtime for traversal on the other hand.

18

4.3 Index Construction

raw

time series

segmented

time series

raw

envelope

segmented

envelope

• stored in index

• for splitting

• for tree traversal

(insertion, querying)

• for splitting • stored in index

• for splitting

Figure 4.2 Comparison of raw and segmented time series and envelopes.

In general, it is di�erentiated between balanced and unbalanced trees. An unbalanced

tree does not impose any constraints on the height, which thus might be O (N) at worst.

For unevenly distributed data together with an unfavorable insertion order (e.g., sorted),

subtrees can become very deep, which leads to high traversal cost. Moreover, the runtime

for insertions and searches might strongly di�er between successive executions depending

on the length of the traversal path. Since most real-world datasets do not follow a normal

distribution, an unconstrained structure often degenerates. In contrast, a height-balanced

tree, like the R-tree or TSEIT, ensures that all leaf nodes have the same depth. The tree

height and thus the length of the paths to the leaf level is limited by O (logN). Balancing

ensures scalability, as operations like insertion and search stay e�cient with increasing

amount of inserted data. This is also the reason why the most common database systems
2

such as Oracle Database, Microsoft SQL Server, MySQL, PostgreSQL or MongoDB use

balanced index structures (usually variants of the B-tree [BM70; Com79]).

There are di�erent kinds of balanced trees. Many balanced trees such as the AVL-tree or the

Red-Black-tree [Bay72] are binary trees. Always having two child nodes, the height of the

tree can only be controlled by the capacity of the leaf nodes. This, however, has a signi�cant

impact on the query performance and does not in�uence the general topology. In contrast,

a B-tree or the derived R-tree support—like TSEIT—more than two child nodes and thus

allow regulating whether a tree becomes high (with few child nodes) or broad (with many

child nodes). For TSEIT, this is important, as the height of a tree in�uences the segment

length in the upper tree levels. A broad TSEIT tree with few levels and many child nodes

has �ner resolved envelopes in the upper levels than a high tree with few child nodes.

4.3 Index Construction

Inserting a time series into the index is all about �nding an appropriate leaf node that can

hold the time series so that the overall tree structure is optimal. Already while descending

the tree, each segmented envelope ET on the insertion path (including the target leaf

2
Database ranking: https://db-engines.com/en/ranking (archived in January 2018:

https://web.archive.org/web/20180103030915/https://db-engines.com/en/ranking)

19

https://db-engines.com/en/ranking
https://web.archive.org/web/20180103030915/https://db-engines.com/en/ranking

4 TSEIT

choose leaf node

insert time series into leaf

leaf exceeds lmax?

reinsertion performed for leaf?

delete and reinsert some

time series from the leaf

split the leaf

parent node exists

and exceeds cmax?

split parent node

+ create root node if required

no yes

no yes

no yes

Figure 4.3 Activity diagram of the insertion algorithm for index construction.

envelope) is updated according to the segmented representation XT of the time series X
with the segment length T of the current tree level:

UpdateEnvelope
(
ET ,XT

)
=

ETu ←
〈
max

(
eTu,1,x

T
u,1

)
, . . . ,max

(
eT
u,|ET |
,xT

u,|X T |

) 〉
ET
l
←

〈
min

(
eT
l ,1
,xT

l ,1

)
, . . . ,min

(
eT
l ,|ET |
,xT

l ,|X T |

) 〉 (4.1)

Finally, a pointer to the raw time series is added to the leaf node found. If the leaf node

exceeds lmax—the maximum number of time series it is allowed to hold—after the insertion,

either some time series are deleted from the node and reinserted, or the leaf is split into two

leaf nodes. This might result in an over�ow of the parent node, which is in consequence

split, too. If splitting propagates up to the root node, a new root is created. While splitting

a leaf node reorganizes the time series locally, reinsertion improves the overall tree by

moving some time series to more appropriate leaf nodes.

For traversal and splitting, several algorithms are proposed in the following, whereas

Chapter 6 evaluates them in detail. A schematic illustration of the overall insertion

algorithm is given in Figure 4.3.

20

4.3 Index Construction

xTl,i

eTl,i

eTu,i

xTu,i

Figure 4.4 Schematic illustration of InsertionCost, where the dashed green lines visualize the

distance. The i-th image corresponds to the i-th case of Equation 4.3.

4.3.1 Traversal

For traversing the index tree from the root to a leaf node to insert a time series, the optimal

subtree to follow needs to be determined at each tree level. For each child node of the

current node, the cost of inserting the segmented time seriesXT into the child’s segmented

envelope ET is calculated. The subtree below the node for which the cost is minimal is

then traversed. Di�erent cost functions, each focusing on other aspects, are proposed as

follows.

Area a�er insertion This is the most simple cost function and equivalent to the envelope

area after inserting the segmented time series into the segmented envelope. It results in

choosing the smallest envelope.

AreaAfterInsertion
(
ET ,XT

)
=

|ET |∑
i=1

max

(
eTu,i ,x

T
u,i

)
−min

(
eTl ,i ,x

T
l ,i

)
(4.2)

Insertion cost This function is based on the cost function proposed by TWIST (cf. Equa-

tion 3.4 on page 11) and is illustrated in Figure 4.4. It is extended to handle segmented

representations of the time series and the envelope. The cost is a combination of the

envelope area after insertion and the required area enlargement.

InsertionCost
(
ET ,XT

)
= (4.3)

|ET |∑
i=1

(
xTu,i − e

T
l ,i

)
2

+
(
eTu,i − x

T
l ,i

)
2

if xTu,i > eTu,i > eTl ,i > xTl ,i

[
XTi wraps ETi

](
xTu,i − e

T
l ,i

)
2

if xTu,i > eTu,i > xTl ,i > eTl ,i

[
XTi overlaps ETi on top

](
eTu,i − x

T
l ,i

)
2

if eTu,i > xTu,i > eTl ,i > xTl ,i

[
XTi overlaps ETi at bottom

](
xTu,i − e

T
l ,i

)
2

+
(
xTl ,i − e

T
u,i

)
2

if xTl ,i > eTu,i
[
XTi is above ETi

](
eTu,i − x

T
l ,i

)
2

+
(
eTl ,i − x

T
u,i

)
2

if eTl ,i > xTu,i
[
XTi is below ETi

]

0 otherwise

[
ETi wraps XTi

]

21

4 TSEIT

XTu
XT
l

ETu

ET
l

Figure 4.5 Visualization of the overlap area (||) between a segmented envelope ET and a segmented

time series X T .

Overlap and insertion cost As the envelopes of the resulting index tree shall overlap only

slightly, it is intuitive to take the overlap into account for creating the index. Therefore,

this cost function chooses the subtree for which the total overlap between all candidate

subtrees after insertion is minimal. However, if the envelopes of two subtrees do already

overlap and the time series to be inserted falls within the overlapping area, the total

overlap does not di�er, regardless of which subtrees is chosen. Hence, in case of a tie

regarding the total overlap, the subtree for which the value of a second cost function is

minimal, is chosen for further traversal. Here, the second cost function is InsertionCost
(cf. Equation 4.3).

The overlap area between a segmented envelope ET and a segmented time series XT is

illustrated in Figure 4.5 and can be calculated as follows:

Overlap
(
ET ,XT

)
=

|ET |∑
i=1

max

(
0,min

(
eTu,i ,x

T
u,i

)
−max

(
eTl ,i ,x

T
l ,i

))
(4.4)

Notice that this equation also holds for the overlap area between two segmented envelopes,

since a segmented time series is conceptually an envelope, too.

Overlap and area a�er insertion Instead of using InsertionCost as the second cost function

like in the previous paragraph, AreaAfterInsertion (cf. Equation 4.2) is used. Thanks to this

function, smaller envelopes are preferred and a continuous enlargement of one or more

already large envelopes is mitigated, while keeping the total overlapping small.

Area enlargement (abolished) For inserting a data object, the original R-tree always

chooses the node, whose bounding box needs the least enlargement. While this seems

natural at �rst glance, this often leads to an uneven data distribution. Applied to TSEIT,

an envelope that has been enlarged early is larger than other envelopes and thus requires

less area enlargement to include further time series. So it is chosen by the algorithm and

enlarged again. This continues and causes the algorithm to always—or mostly—choose the

same envelope. However, as an index tree with only a few large and full leaf nodes, while

the majority is sparse, is not desired, the cost function area enlargement is not used.

22

4.3 Index Construction

4.3.2 Splitting

A leaf node only holds a limited number of time series to ensure that the index tree grows.

If a leaf node exceeds its maximum capacity lmax, it is split into two nodes. The node’s

time series are assigned to one of both, guaranteeing that each new node holds at least

lmin time series after splitting. For inner nodes, the number of child nodes is between cmin

and cmax which requires splitting in case of an over�ow, too. To this, the envelope of each

child node is converted to a single time series by computing the central sequence. Thanks

to this transformation, the same algorithms can be used for splitting both inner nodes and

leaf nodes.

Splitting aims to group similar time series so that the resulting envelopes are small and

overlap only slightly. It can also be considered as clustering of time series.

In the following, three di�erent splitting algorithms are proposed, including a novel

approach called k-envelopes.

4.3.2.1 k-Means

k-means [Mac67] and its implementation by Lloyd [Llo82] is a simple and popular clus-

tering algorithm that iteratively adds each data objects to the closest of k clusters. Both

TSEIT and TWIST use k-means clustering for splitting, with k = 2 and the Euclidean

distance function.

While it was revealed that k-means performs well for time series regarding runtime and

clustering quality [PG15], it does not allow the de�nition of a minimum cluster size.

Therefore, k-means can only be used if lmin = 1. For splitting inner nodes, the original

k-means is not applicable at all, as cmin is required to be at least two.

4.3.2.2 k-Envelopes

k-envelopes is a novel clustering algorithm based on ideas of Lloyd’s k-means algorithm

[Llo82] and tailored to the needs of TSEIT. Unlike k-means, it supports constraints on

the minimum or maximum cluster size and thus enables a minimum �lling degree for the

TSEIT nodes. While k-means minimizes the variance within a cluster, k-envelopes also

allows the optimization of the overlap and the total cluster size by using di�erent cost

functions. Similar to k-means, sequences are repeatedly assigned to one of two clusters—

the envelopes—whereby the initial cluster centers are recalculated after each iteration.

For the use with TSEIT, the algorithm is designed for two clusters (k = 2), but it can be

extended to support an arbitrary number.

Figure 4.6 lists a slightly simpli�ed version of the algorithm as pseudo-code. The sequences

are �rst sorted by their sum. While sorting is by default ascending, the sequences can

optionally be sorted alternating, so that the sequence with the smallest sum is followed

by the sequence with the largest one and so on (1,N , 2, (N − 1), . . . for N sequences).

23

4 TSEIT

Algorithm KEnvelopes(sequences[], min_size):
bsf_labels← []; // holds for each sequence the index of the envelope it is assigned to
sequences, sort_indices← sort_by_sum(sequences);
prev_centers← [sequences.�rst(), sequences.last()];

prev_total_area←∞;

while not maximum number of iterations do

labels← [];

envelopes← [{ upper: center , lower: center } foreach center in prev_centers];

foreach sequence in sequences do
// assign the sequence to the envelope for which the cost is minimal
min_cost ← ∞; min_envelope← None;

foreach envelope in envelopes do
cost ← calc_cost(envelope, sequence);
if cost < min_cost then

min_cost ← cost; min_envelope← envelope;
end

end

labels.append(min_envelope.index());

min_envelope.update(sequence);

// if min_envelope is full, assign remaining sequences to the other envelope
if min_envelope.size() == sequences.length() − min_size then

other_envelope← (min_envelope.index() == 0) ? envelopes[1] : envelopes[0];

for 1 to min_size - other_envelope.size() do

labels.append(other_envelope.index());

other_envelope.update(sequences.next());

end

break;

end

end

total_area← envelopes[0].area() + envelopes[1].area();

if total_area ≥ prev_total_area then break;

bsf_labels← labels;
prev_centers← [calc_central_sequence(envelope) foreach envelope in envelopes];

prev_total_area← total_area;

end

labels← undo_sorting(bsf_labels, sort_indices);
return labels;

Figure 4.6 Slightly simpli�ed k-envelopes algorithm for assigning a list of sequences to two

envelopes. Unlike this pseudo-code, the full algorithm supports a second cost function

in case of a tie and optionally allows alternated sorting.

24

4.3 Index Construction

Alternated sorting aims to improve the clustering quality, as especially in the beginning

strongly di�erent time series are assigned successively to one of the envelopes. The

initial centers are the �rst and the last sequence after sorting, or the �rst two in case of

alternated sorting. In this way, the two initial envelopes are prone to have a large distance,

which facilitates discrimination and the creation of envelopes with a minimum area and a

minimum overlap.

The algorithm then repeatedly executes the following steps as long as the total envelope

area decreases and the maximum number of iterations is not reached:

• Initialize the envelopes by the central sequences.

For each envelope, both its upper and lower sequence is set to one of the central se-

quences of the previous iteration (or to the initial one in the �rst iteration). Therefore,

the envelopes have an initial area of zero.

• Assign each sequence to the envelope for which the cost is minimal.

All cost functions introduced in Section 4.3.1 on page 21 can be used, whereby

AreaAfterInsertion is the default one, as it tends to create uniform sized envelopes.

The assignment is recorded, e.g., using a “label” list mapping each sequence to

an envelope index. The chosen envelope E with the upper sequence Eu and the

lower sequence El is then updated according to the raw time series X , similar to

Equation 4.1 on page 20:

UpdateEnvelope(E,X) =

Eu ←
〈
max

(
eu,1,x1

)
, . . . ,max

(
eu,|E |,x |X |

) 〉
El ←

〈
min

(
el ,1,x1

)
, . . . ,min

(
el ,|E |,x |X |

) 〉 (4.5)

• If one envelope is full, assign the remaining sequences to the other envelope.

If an envelope already contains the maximum allowed number of sequences, assign

the remaining sequences to the other envelope. This ensures that the latter one

complies with the minimum cluster size.

• Stop, if the quality decreases.

After having assigned all sequences to an envelope, compute the total area of both

envelopes. If the area is larger than in the previous iteration, the iterations are

stopped immediately, and the previous labels are used, as they give a local minimum

area.

• Calculate the new central sequence for each envelope.

The central sequence is the sequence in the middle between an envelope’s upper

and lower sequence Eu and El , respectively:

CentralSequence(E) = El +
Eu − El

2

(4.6)

where +,−, / are applied element-wise.

25

4 TSEIT

Depending on the implementation, the label list must eventually be re-sorted so that the

mapping corresponds to the original sequence order.

Like Lloyd’s k-means algorithm, k-envelopes is a heuristic and, therefore, does not neces-

sarily converge to the global optimum. When the algorithm stops, only a local minimum

for the total envelope area might have been found. For k-means, it is common to run the

algorithm several times with di�erent initial cluster centers that are usually generated with

some degrees of randomness. In an early development stage of k-envelopes, the envelopes

have been initialized by randomly chosen sequences, and even a random processing order

was evaluated. However, this has not improved the clustering quality. Furthermore, it has

been tested to stop the algorithm only once the labels do not change anymore. However, it

turned out that the assignment of time series to the envelopes can oscillate and, moreover,

that the overall quality can decrease in later iterations.

k-envelopes has an overall runtime complexity of O (N logN) for splitting a set of N
sequences into two groups. Without taking the initial sorting of the input sequences

and the �nal sorting of the labels into account, the complexity amounts to O (iNn), with

i iterations and sequences of length n. As the number of iterations is usually low—1 to 10

in most cases—and the sequence length is �xed within a dataset, k-envelopes is almost a

linear time algorithm in practice concerning the number of sequences (that is limited by

lmax or cmax, anyway).

4.3.2.3 Overlap Split

Overlap Split is an adaption of the splitting algorithm of the R*-tree [Bec+90]. Like k-

envelopes, it supports a minimum cluster sizemin_size making it suitable for TSEIT (with

lmin and cmin for leaf nodes and inner nodes, respectively).

The N sequences are �rst sorted by their sum. Then, N − 2 ·min_size + 1 di�erent splits

into two clusters, i.e., envelopes, are calculated, where the �rst envelope of the k-th split

contains the �rst (min_size − 1) + k sequences, and the second envelope contains the

remaining ones. The k-th split is illustrated in Figure 4.7. Finally, the split with the

minimum overlap between its envelopes and—in case of a tie—the minimum total envelope

area, is chosen like in the original approach. An e�cient algorithm that only requires

a minimum number of costly envelope updates, by iteratively extending the envelopes

instead of recalculating them in each iteration, is shown in Figure 4.8.

Similar to k-envelopes, the total runtime complexity of Overlap Split is in O (N logN) for

splitting a set of N sequences. Without considering the initial and �nal sort operations,

the complexity is in O (Nn) for N sequences of length n.

0
min_size k N − 1

cluster 1 cluster 2

Figure 4.7 Schematic illustration of the k-th split of Overlap Split.

26

4.3 Index Construction

Algorithm OverlapSplit(sequences[], min_size):
N ← sequences.length();

min_index ← None; min_overlap← ∞; min_area← ∞;

sequences, sort_indices← sort_by_sum(sequences);

envelope_one← initialize_envelope(sequences[0]);

for i from 1 to min_size - 2 do

envelope_one.update(sequences[i]);
end

// envelope_one "contains" the �rst min_size − 1 sequences now

envelope_two← initialize_envelope(sequences[N - 1]);

for i from N − 2 to N - min_size do
envelope_two.update(sequences[i]);

end

// envelope_two "contains" the last min_size sequences now

envelope_two_list ← [envelope_two];

for i from N −min_size − 1 to min_size do
envelope_two_list.append(envelope_two_list.last().copy().update(sequences[i]))

end

// envelope_two_list holds N − 2min_size + 1 precomputed envelopes now

for k from 0 to N − 2min_size do // generate and evaluate di�erent splits
i← min_size − 1 + k;

envelope_one.update(sequences[i]);
envelope_two← envelope_two_list[envelope_two_list.length() −k − 1];

overlap← calc_overlap(envelope_one, envelope_two);

if overlap < min_overlap then

min_index ← i; min_overlap← overlap;

min_area← envelope_one.area() + envelope_two.area();

else if overlap == min_overlap then

area← envelope_one.area() + envelope_two.area();

if area < min_area then
min_index ← i; min_area← area;

end

end

end

labels← [0 for _ from 0 to min_index].append(

[1 for _ from min_index + 1 to N − 1]);

labels← undo_sorting(labels, sort_indices);
return labels; // holds for each sequence the index of the envelope it is assigned to

Figure 4.8 Overlap Split algorithm for assigning a list of sequences to two envelopes.

27

4 TSEIT

4.3.3 Reinsertion

Early inserted time series might have a stronger impact on the characteristics of the index

tree than later inserted ones. This can be harmful and degrade the query performance if

the envelopes are much larger than they would be with a better distribution of the time

series among the leaf nodes. Although splitting a leaf node reorganizes time series, it is

only a local optimization without taking the overall structure of the tree into account. Even

the split of an inner node cannot solve the problem that time series might be contained

by not the best �tting subtree, which unnecessarily increases the area of all upper-level

envelopes. To overcome these issues, [Bec+90] proposes to force the reinsertion of data

objects—the time series in this work—during the insertion process. By deleting time series

from a leaf node and reinserting them, they might land up in another part of the tree

leading to overall tighter envelopes. While this usually compensates the increase of the

insertion time, reinsertion is an optional feature of TSEIT.

Reinsertion is triggered whenever a leaf node for which no reinsertion was already per-

formed exceeds lmax, the maximum time series count allowed per leaf. Executing the

reinsertion only once per leaf node prevents in�nite loops if the time series are reinserted

into the same leaf node again. After an envelope’s outer 30% of the time series are deleted,

all parental envelopes up to the root node are adjusted accordingly. Afterward, the deleted

time series are reinserted into the updated tree.

In greater detail, the following steps are performed:

• Sort the time series by their distance to the envelope center.

The envelope center is the central sequence and calculated as in Equation 4.6 on

page 25. If the envelope is segmented, the resulting sequence is shorter than the raw

time series and needs to be extended by repeating each sequence elementTmin times.

The last sequence element might be repeated less often. The Euclidean distance is

used as distance measure.

• Remove the last 30% of the time series from the envelope.

The last time series after sorting are the outer ones, having the maximum distance to

the envelope center. As an envelope is not self-maintainable with respect to deletion

(cf. Section 3.3.2.2 on page 11), it needs completely be recreated by the �rst 70% of

the time series. Removing the outer 30% seems reasonable and is borrowed by the

R*-tree.

• Adjust all covering envelopes up to the root node.

By deleting time series from a leaf node, the associated envelope usually gets smaller.

Therefore, all parent envelopes up to the root must also be adjusted to still enclose

their child envelopes tightly. For this, each parent node needs to access the envelopes

of all of its child nodes.

If envelope segmentation is used, the segment length of a parent envelope is twice

the child nodes’ segment length. Hence, to recreate a parent envelope, all child

28

4.4 k-NN Querying

envelopes have to be transformed into envelopes with the corresponding length.

This is done by combining every two consecutive values of a child envelope ET as

follows:

CombineValues
(
ET

)
= (4.7)

ETu ←
〈
max(eTu,1, e

T
u,2),max(eTu,3, e

T
u,4), . . . ,max(eTu,n−1, e

T
u,n)

〉
ET
l
←

〈
min(eT

l ,1
, eT

l ,2
),min(eT

l ,3
, eT

l ,4
), . . . ,min(eT

l ,n−1
, eT

l ,n
)
〉

Alternatively, the parent envelope can �rst be recreated with the original child

envelopes and be likewise transformed afterward.

• Insert the deleted time series into the tree.

The reinsertion of the orphaned time series is now performed as usual.

4.4 k-NN Querying

The following describes the interval-based search for the k-NN time series using the TSEIT

index. An illustration of the overall procedure is presented in Figure 4.9.

Given a time series X , a time interval from a to b and a k ≥ 1, the k time series Yi , . . . for

which the distance DTW (X [a:b],Yi[a:b]) is minimal, shall be found. X [a:b] denotes the

subsequence of X from a to b inclusive:

X [a:b] = 〈xa,xa+1, . . . ,xb−1,xb〉 with 1 ≤ a ≤ b ≤ n = |X | (4.8)

4.4.1 Fundamental Query Algorithm

The main idea of the query algorithm is to calculate lower-bound distances to envelopes,

representing entire subtrees, and to follow only those with a distance smaller than the

current best-so-far distance. The best-so-far distance is the distance between the query

time series and the k-nearest neighbor. Note that for all distance calculations only the

subsequence within the speci�ed time interval is considered. For receiving the closest

candidate node, the algorithm maintains a min-heap holding nodes together with their

lower-bound distance to the query time series. The heap invariant ensures that the �rst

node in the heap is always the one with the smallest distance.

Initially, each child node of the root node is pushed onto the min-heap together with

the LBG lower-bound distance of its envelope to the query time series. As long as the

min-heap is not empty, the �rst and thus closest node is popped, in other words, returned

and removed from the heap. The algorithm stops if the closest node’s lower-bound distance

is larger than the best-so-far distance. In this case, all remaining nodes in the queue have

an even larger distance and cannot hold any nearest neighbor time series. If the popped

node is an inner node, all of its child nodes are pushed together with their lower-bound

29

4 TSEIT

query← the query time series

node_heap− ← max-heap holding (distance, node) items

ts_heap+ ← min-heap holding (distance, time series) items

d_best← ∞ = distance to the k-NN

result_list← list holding IDs of the k-NNs with 1-NN �rst

push (0, root_node) onto node_heap−

pop item from node_heap−

is item.d > d_best ?

exit loop is item.node an inner node?

d← LBG(query, child_node)

push (d, child_node)
onto node_heap−

process leaf node

for each

child_node:

while node_heap−

is not empty:

pop item from ts_heap+

prepend item.ts.id to result_list

while ts_heap+

is not empty:

return result_list

yes no

yes no

(a) The overall querying process.

Figure 4.9 Activity diagram of the k-NN querying process.

30

4.4 k-NN Querying

LB_Kim(query, ts) < d_best
or ts_heap+.size () < k ?

d_true← DTW(query, ts)

ts_heap+.size () < k ?

push (d_true, ts)
onto ts_heap+

d_true < d_best ?

push (d_true, ts)
onto ts_heap+

pop from ts_heap+

d_best← distance of �rst

item of ts_heap+

for each

time series ts:

no yes

yesno

no yes

(b) The activity process leaf node only.

31

4 TSEIT

0 20 40 60 80 100 120

time of the raw time series

a b

T

0 1 2 3 4 5 6 7

index of the segmented envelope

Figure 4.10 Exemplary segmented envelope with segment length T , along with a query interval

from a to b speci�ed in the time space of the raw time series as annotated by the

bottom axis. The top axis describes the indices of the upper and lower envelope

sequence.

distances onto the min-heap. Whenever a leaf node is popped from the heap, all of its

time series are accessed. For each time series, a lower bound for the distance to the query

time series is calculated. While LB_Kim is used in this work, other lower-bound functions

introduced in Section 3.2.2 on page 9 can be used, alternatively or additionally. If the lower

bound is already larger than the best-so-far distance, the time series cannot be one of the

k-NN and is therefore omitted. However, whenever the lower bound is smaller, the exact

but computational extensive DTW distance is calculated. In the case that also the exact

distance is smaller than the best-so-far distance, the time series is pushed onto a max-heap

along with the distance. The max-heap holds the k (or less) closest time series among the

ones examined so far, where the �rst one is the farthest away. Afterward, the �rst time

series in the max-heap is removed, as it has a larger distance to the query than the just

inserted time series. Finally, the best-so-far distance is set to the distance of the new �rst

time series in the heap. The algorithm then continues with the next time series of the

current leaf node, or the next candidate node if any exits. It stops popping nodes from

the min-heap, once the heap is empty or once the �rst node has a lower-bound distance

larger than the best-so-far distance. In this case, all remaining nodes have an even larger

distance and thus cannot hold the nearest neighbors. The max-heap now contains the

k-NN time series, that can be obtained in descending order by repeated pop operations.

Appendix A.3 on page 80 lists the execution of exemplary k-NN queries.

4.4.2 Querying with Segmented Envelopes

With segmentation enabled, the query sequence is segmented while traversing the tree.

The segment length equals to T = bmin(n, 2l · Tmin)c for the tree level l ≥ 0, where

the leaf nodes are at level 0. However, the �rst and last segment in the query interval

32

4.4 k-NN Querying

might be covered only partially. Moreover, the segment length and thus the length of the

envelope sequences di�ers for di�erent tree levels. All of this must be taken into account

for calculating the lower-bound distance between the query and an envelope, and for

comparing envelopes at di�erent tree levels.

Figure 4.10 illustrates these circumstances for an envelope with eight segments of length

T = 15 along with a query interval from a = 40 to b = 85, and time series of length 120.

This results in segment lengths of 5, 15, 15 and 10 for the four segments from index 2 to 5

in the query interval.

To support di�erent segment lengths in the query interval, the LBG lower-bound distance

of TWIST (cf. Section 3.3.3.2 on page 12) is modi�ed as in [SYF05]. Instead of multiplying

the distance between two segments by the current level’s full segment length T , the

minimum of the lengths Ti and Tj of the segments i and j , respectively, is used. This lower

bounds the true distance between the segments. The complete LBG lower bounds the

distance between the segmented query sequence XT and the segmented envelope ET

including the time series the latter holds. The full equation is given below for the sake of

clarity.

LBG
(
XT ,ET

)
= Dn,m (4.9)

with D0,0 = 0, Di,0 = D0,j = ∞

Di,j = d
(
XTi ,E

T
j

)
+min(Di,j−1,Di−1,j ,Di−1,j−1)

d
(
XTi ,E

T
j

)
= min

(
Ti ,Tj

)
·

���x
T
l ,i
− eTu,j

���
2

if xT
l ,i
> eTu,j

���e
T
l ,j
− xTu,i

���
2

if eT
l ,j
> xTu,i

0 otherwise

33

5 Implementation

This chapter introduces details on the implementation of TSEIT. First, the third-party

tools used are presented, followed by the overall architecture and further insights into

various parts of the developed application, including performance optimizations. Finally,

a technical evaluation concerning code quality and runtime behavior is given.

5.1 Tools and Languages

The time series and the TSEIT index are stored in a PostgreSQL database and maintained

by a server-side application written in Python. Furthermore, a client-side module provides

several helper tools. In the following, the database system is introduced �rst, before the

programming language Python and libraries used are presented.

5.1.1 PostgreSQL

PostgreSQL
1

is one of the most popular relational database systems
2

and available under

an open source license. It is founded on the relational data model, where data is organized

in tuples that are grouped into relations.

PostgreSQL provides an interface for Generalized Search Trees (GiST) [HNP95] that allows

the creation of custom balanced index trees by implementing a set of prede�ned methods.

While this seems useful for implementing the TSEIT index tree at �rst glance, GiST indexes

are not �exible enough and do not allow debugging, as they are managed fully internally

by the database system. Therefore, TSEIT does not use the GiST interface.

In this work, PostgreSQL is used in version 9.6 to store the time series and the TSEIT index

itself. In contrast to other relational database systems such as MySQL, it supports writing

custom functions in Python instead of procedural SQL, which is a major reason why it

was chosen.

1
Homepage of PostgreSQL: https://www.postgresql.org/

2
Database ranking: https://db-engines.com/en/ranking (archived in January 2018:

https://web.archive.org/web/20180103030915/https://db-engines.com/en/ranking)

35

https://www.postgresql.org/
https://db-engines.com/en/ranking
https://web.archive.org/web/20180103030915/https://db-engines.com/en/ranking

5 Implementation

5.1.1.1 PL/Python

The PL/Python
3

procedural language allows writing PostgreSQL functions in Python that

are executed by the operating system’s Python interpreter. As it is possible to use any

Python module that is present in the PYTHONPATH, PL/Python functions can be arbitrary

powerful and sophisticated. Furthermore, the language module automatically imports a

module for accessing the database that also provides several utility methods for logging.

While both Python 2 and Python 3 are supported, the latter is used in this work.

For security reasons, PL/Python is only available as untrusted language requiring database

superuser permissions to de�ne functions of that type. PL/Python functions are exe-

cuted with the permissions of the database administrator, instead of with the possibly

restricted permissions of the database user calling the functions. Thus, a malicious or

�awed PL/Python function might provoke privilege escalation or data leaks by reading or

manipulating sensitive data in the �le system or database.

5.1.2 Python

Python
4

is an interpreted general-purpose programming language with a convenient

syntax and semantic. Together with a considerable number of excellent libraries, it is

well-suited for rapid development. Among other paradigms, it supports functional and

object-oriented programming.

In this work, Python in version 3.5 is widely used for initializing the database, inserting

time series, maintaining the index structure, performing k-NN queries and evaluating the

index.

Python applications can be structured by modules and packages. A Python module is a

�le containing de�nitions and statements, whereas a Python package is a module which

can contain submodules or subpackages that are saved in the same directory. A collection

of packages or modules is often referred to as library.

5.1.2.1 NumPy

In comparison to compiled languages such as C or Fortran, traversing lists or multidi-

mensional arrays with standard Python loops is slow. Remedy o�ers the Python library

NumPy
5

by providing a special multidimensional array type for fast vectorized arithmetic

operations, usually without the need for loops. Following the single instruction, multi-
ple data paradigm [Fly72; Dun90], NumPy operates on whole blocks of data instead of

processing array elements individually. Moreover, NumPy is the foundation of several

scienti�c libraries for machine learning and data analysis.

3
Documentation of PL/Python: https://www.postgresql.org/docs/9.6/static/plpython.html

4
Homepage of Python: https://www.python.org/

5
Homepage of NumPy: http://www.numpy.org/

36

https://www.postgresql.org/docs/9.6/static/plpython.html
https://www.python.org/
http://www.numpy.org/

5.1 Tools and Languages

The main reason for the e�ciency of NumPy arrays is their internal memory layout. While

the items of a standard Python list are spread across the system memory, the data of a

NumPy array is stored in a contiguous block of memory. Together with the condition that

all array items must be of the same type and size, this allows accessing every part of the

array by some simple arithmetic on the address of the memory block. The NumPy arrays

and most operations on them are written in the low-level language C, as it performs index

arithmetic e�ciently. Furthermore, storing the data as blocks enables optimizations of

the CPU, leading to additional performance gains. Many access patterns like an array

traversal or manipulation have spatial locality, meaning that it is likely that nearby memory

locations will be accessed soon. Since the CPU usually loads not only individual elements

but additionally some adjacent elements into its cache, the cache is always hit in these

scenarios. Some CPUs even implement vectorized arithmetical operations that can operate

on NumPy’s memory blocks as e�cient CPU instructions.

With this in mind, it is not surprising that in this work, the time series and envelope

sequences are processed as NumPy arrays. Furthermore, almost all for-loops for traversal

are replaced by vectorized NumPy operations. Despite a small overhead for converting

standard Python lists to NumPy arrays, this gives a signi�cant performance gain.

5.1.2.2 Further packages

In addition to NumPy, this work uses the following Python packages. The �rst two are

used on the server side, whereas the other packages are used on the client side.

scikit-learn Built on top of NumPy, scikit-learn
6

is a powerful library for data mining

and data analysis, including a k-means implementation that is used in this work.

FastDTW The Python module FastDTW
7

implements the same-named algorithm by

[SC07]. Besides a fast approximated DTW distance by constraining the search radius, an

exact DTW search is supported.

Psycopg Psycopg
8

is an adapter mostly written in C for accessing a PostgreSQL database

from within Python modules.

Graphviz The graph visualization tool Graphviz
9

is used together with a Python adapter
10

for debugging the structure of the index tree. The graphs are speci�ed with the graph

description language DOT.

Matplotlib Matplotlib
11

is a general-purpose plotting library for Python and used to

visualize time series and envelopes, as well as the insertion progress over time.

6
Homepage of scikit-learn: http://scikit-learn.org/

7
Code repository of the FastDTW implementation for Python: https://github.com/slaypni/fastdtw

8
Homepage of Psycopg: http://initd.org/psycopg/

9
Homepage of Graphviz: https://graphviz.gitlab.io/

10
Code repository of the Graphviz interface for Python: https://github.com/xflr6/graphviz

11
Homepage of Matplotlib: https://matplotlib.org/

37

http://scikit-learn.org/
https://github.com/slaypni/fastdtw
http://initd.org/psycopg/
https://graphviz.gitlab.io/
https://github.com/xflr6/graphviz
https://matplotlib.org/

5 Implementation

database initialized?

initialize the database

(TSEIT Manager)

insert into tseit_time_series
(e.g., TSEIT Manager)

update tseit_index
(TSEIT)

no

yes

triggers

Figure 5.1 Once the database has been initialized using the TSEIT Manager Python package, each

insertion of a time series into the tseit_time_series table triggers an update of the

tseit_index table by the TSEIT package.

pandas pandas
12

(in lower case) provides e�cient data structures and analysis tools for

tabular data. In this work, it is mainly used for processing CSV �les holding evaluation

results.

XlsxWriter XlsxWriter
13

allows generating Excel spreadsheets by writing Python code.

As part of this work, it is used to convert raw CSV �les to spreadsheets with conditional

formatting for an easier perception of evaluation results.

5.2 Architecture

The reference implementation of TSEIT stores the time series and the index structure

itself inside two PostgreSQL tables. As shown in Figure 5.1, a PL/Python trigger function

maintains the index by updating the index table after each insertion of a time series into

the time series table. The k-NN search is implemented as a PostgreSQL function written

in PL/Python, too, and can be executed by a particular SQL statement. A server-side

Python package called TSEIT implements the PL/Python functions, whereas a client-side

package called TSEIT Manager provides several tools for database initialization, time series

insertion, monitoring, and analysis.

Many publications introducing novel index structures such as [NRR10] or [ZIP16] store

all data, including the index, in plain text �les. Using a database system like PostgreSQL

instead, allows making use of the provided data structures and e�cient retrieval methods.

The use of trigger functions and stored procedures, instead of an external client application

that connects to the database to both insert time series and to update the index table,

does not necessarily result in a signi�cant performance gain. However, it allows using

any database client without the need to know that an index is being managed in the

background. Whereas using the TSEIT Manager is one option, time series can be inserted

in any manner, e.g., using a graphical user interface or a custom script, locally or remote.

After initialization, TSEIT is transparent to the user when running insertion and k-NN

search statements in the database.

12
Homepage of pandas: http://pandas.pydata.org/

13
Code repository of XlsxWriter: https://github.com/jmcnamara/XlsxWriter

38

http://pandas.pydata.org/
https://github.com/jmcnamara/XlsxWriter

5.3 Database Design

tseit_index

id: integer (primary key)

level: smallint

parent_id: int

env_upper : real[]

env_lower : real[]

time_series: integer[]

reinsert: boolean

tseit_time_series

id: integer (primary key)

name: text

seq: real[]

tseit_meta

property: string (primary key)

value: string

Figure 5.2 The database schema of TSEIT. For performance reasons, the illustrated pointers are

not implemented with foreign keys constraints, but maintained by the TSEIT module.

The table tseit_meta is read-only.

5.3 Database Design

TSEIT’s database contains two major tables and a read-only meta table with information

on the con�guration and creation time, as illustrated in Figure 5.2. The time series are

stored as arrays of �oating-point numbers in the table tseit_time_series together with an

optional name and an auto-generated numeric identi�er (ID). The index tree is held by the

table tseit_index and represented as an adjacency list, where each table row corresponds

to a tree node. Each node refers to the ID of its parent node, except the former is the root

node. Furthermore, each row contains the level of the corresponding node. An envelope is

stored as separate upper and lower sequences, each as an array of �oats. Finally, a Boolean

�ag indicates whether reinsertion was already performed for the node. If the node is a leaf

node, a further column contains an array of numeric IDs, each referring to a time series in

the tseit_time_series table.

For performance reasons, the parent ID and the time series IDs are not maintained by

foreign keys. Foreign key constraints are useful in many applications and allow, for

example, cascaded deletions. However, they add overhead due to additional integrity

checks. Since only the TSEIT implementation is accessing the index table, it can dispense

with the foreign keys.

To improve the performance of tree traversal, an internal index is created on the ID and

the parent ID column. For each index, PostgreSQL is building a B-tree specialized for

high-concurrency [LY81] that holds column values together with identi�ers to the physical

row locations.

While there are numerous ways to represent hierarchical structures in the relation model,

each has its own drawbacks. Adjacency lists enable e�cient retrieval of the immediate

parent or child node of a given node. Furthermore, inserting and removing single nodes is

straightforward. On the downside, retrieving all child or parent nodes is expensive, as it

requires either a join per tree level or a recursive query. However, this access scenario

39

5 Implementation

does not exist for TSEIT since both the insertion and the query algorithm never process

nodes from multiple levels at once. A fast tree traversal in descending or ascending level

order is more critical and enabled by the chosen structure.

One-to-many relationships like from one leaf node to many time series are usually mapped

by a separate table in order not to violate the �rst normal form [Cod70] by holding non-

atomic values. However, as always all time series of a leaf node are processed, e.g., for

recalculating the envelope after deletion or for a k-NN search, and as it is not necessary to

�nd the leaf that holds a speci�c time series, the introduced design is su�cient.

5.4 TSEIT

The TSEIT package is the key component, as it implements the index creation and the

k-NN query algorithm. It is built as a distributable and installable module that is called by

the PL/Python functions. The insertion trigger, for example, basically consists of an import

statement and a call to the runmethod of TSEIT passing the new row of the tseit_time_series
table. Global data, such as the user-de�ned con�guration or cached query plans, is shared

using a global module-level variable that can be imported by any submodule. This is a

standard approach and also applied by large frameworks such as Django.

TSEIT is lightweight and organized by subpackages that group similar modules. It follows

the procedural programming paradigm and dispenses with a complex object-oriented

class hierarchy, as it does not introduce great advantages, but adds overhead. Exceptions

are the splitting algorithms k-envelopes and Overlap Split, which are implemented in

object-oriented style to provide the same interface as the k-means module from scikit-learn.

Tree nodes and time series are represented as dictionaries—associative arrays that map

keys to values. Since they have the same structure as the database tables, no additional

object-relational mapping is required.

5.4.1 Performance Optimizations

Even an e�cient algorithm can have a poor runtime in practice if the implementation

is not well-designed. When dealing with massive datasets, every tiny performance gain

for processing a single time series can have a signi�cant impact on the overall runtime.

Thanks to the numerous minor and major code optimizations presented below, the �nal

implementation has no avoidable bottlenecks and is around ten times faster than the �rst

prototypes.

Alternative solutions concerning single methods have been evaluated using Python’s

timeit module that allows measuring the execution time of small code snippets. The

overall implementation has been examined using cProfile, which provides statistics

on how long and often di�erent parts of a program are executed. Pro�ling results are

presented at the end of this chapter in Section 5.6.2 on page 46.

40

5.4 TSEIT

def overlap_naive(env_one, env_two):

overlap = 0.0

for u1, l1, u2, l2 in zip(env_one['upper'], env_one['lower'],

env_two['upper'], env_two['lower']):

overlap += max(0.0, min(u1, u2) - max(l1, l2))

return overlap

def overlap_vectorized(env_one, env_two):

return ((np.minimum(env_one['upper'], env_two['upper']) - # element-wise

np.maximum(env_one['lower'], env_two['lower'])) # min / max

.clip(min=0).sum())

(a)Computing the size of the overlap area of two given envelopes.

def segment_naive(sequence, segment_length):

segments_upper, segments_lower = [], []

for i in range(len(sequence) // segment_length):

x = i * segment_length

y = x + segment_length

sub_sequence = sequence[x:y]

segments_upper.append(max(sub_sequence))

segments_lower.append(min(sub_sequence))

return (segments_upper, segments_lower)

def segment_vectorized(sequence, segment_length):

transform to `len(sequence)/segment_length × segment_length` matrix

matrix = sequence.reshape(-1, segment_length)

return (matrix.max(axis=1), matrix.min(axis=1)) # min / max per row

(b) Segmenting a given sequence. For the sake of simplicity, it is assumed in this example that the

sequence length is a multiple of the segment length.

Figure 5.3 Examples for standard Python and corresponding vector-based implementations using

NumPy.

Vector-based operations The traditional way of processing each value of a list is to

loop through the data structure. However, as standard Python loops are executed by an

interpreter, the runtime performance is poor, especially compared to compiled languages

such as C. Operating on entire sequences instead of accessing single items, is the core

concept of NumPy. Replacing loops by vector-based NumPy operations can reduce the

execution time to only 2 − 15% of the original time, depending on the complexity and size

of the input. Usually, the larger the input, the more pays the application of NumPy o�.

Nearly all loops for traversing sequences or envelopes have been replaced by NumPy-based

vector operations. Figure 5.3 shows two di�erent methods optimized in this way.

41

5 Implementation

def process(el, kind):

if kind == 'env':

process envelope

else:

process sequence

for el in data:

process(el, kind)

for el in data:

if kind == 'env':

process_env(el)

else:

process_seq(el)

if kind == 'env':

process = process_env

else:

process = process_seq

for el in data:

process(el)

(a) (b) (c)

Figure 5.4 Various ways to write conditions on the type when iterating through the input data.

While (a) and (b) require a test in each iteration, variant (c) tests the type only once

before looping.

Compute all segmentations at once While the segmented representation of an envelope

or sequence can already be computed e�ciently using NumPy, the performance can be

further improved by taking advantage of the fact that the segment length doubles with

each upper tree level. By combining every two consecutive values of the representation for

the level below, it is not necessary to compute the segments for each level independently,

and the length of the sequences to process is reduced with each level.

E�icient iterators It is not always possible to replace slow Python loops by e�cient vector-

based operations. The built-in Python module itertools provides a set of functional tools

for creating and using fast and memory-e�cient iterators. All of them are implemented in

C. This module allows, for example, replacing complex nested loops with a single one.

Abandoning conditionals Repeated if statements, especially inside loops, can degrade

the performance, but are sometimes easy to replace. At many places in the code, it is

necessary to di�erentiate whether the input data describes sequences or envelopes. For

example, the Overlap Split algorithm iteratively updates the target envelopes by either

input sequences or by input envelopes. Instead of testing the input type in each iteration

to decide which function to call (cf. Figure 5.4a and 5.4b), the test can be moved outside

the loop (cf. Figure 5.4c). Depending on the type, the proper function is then bound to a

local variable and called inside the loop without the need for repeated tests.

Optimize SQL queries When a query is issued, the database system needs to parse it and

create an execution plan. By using prepared statements, this work has to be done only

once per database session, since subsequent calls use an already compiled plan. Therefore,

TSEIT creates a prepared statement for each query the �rst time it is issued, and stores

a reference in the global con�guration module for reusing the statement subsequently.

Using the global con�guration module for caching the prepared statement is possible,

as the TSEIT module is loaded only once per session and not for each single time series

insertion (assuming that multiple time series are inserted in one session). This approach

improves the total runtime by around 10%.

42

5.5 TSEIT Manager

Using an index on the parent_id column is clearly advantageous, as it speeds up the

traversal, especially for large index trees.

The SQL queries themselves are quite simple CRUD statements without complex joins or

recursion and therefore o�er only little room for optimization. Nevertheless, improvement

is possible. The table tseit_index contains a column holding for each leaf node a list of time

series IDs. As the column is not �lled for inner nodes, it is not necessary to always include

it in the result set. Receiving it only when required slightly improves the runtime.

5.4.2 Configurable Parameters

The TSEIT index is highly con�gurable, following the variations introduced in Chapter 4.

With a con�guration �le, the user can specify, among other things, the topology of the

tree, the splitting algorithms or the cost functions. The default con�guration �le together

with all possible options is listed in Appendix A.1 on page 77.

5.4.3 TWIST

To allow a fair comparison between TSEIT and TWIST, both are implemented on the same

code basis. The implementation of TWIST thus shares the design with TSEIT and uses the

same data structures and helper methods, e.g., for accessing the database, including the

mentioned optimizations. The use of TWIST can be switched per con�guration �le.

5.5 TSEIT Manager

The TSEIT Manager is a client-side companion module for TSEIT . It provides several utility

modules, whereby most of them can be executed independently from each other from the

command line. The provided modules are brie�y introduced in the following.

create_database This module provides the routines for initializing TSEIT by creating

the database, tables and trigger functions.

Optionally, the following PostgreSQL helper functions can be installed. As they require

additional PostgreSQL extensions and special permissions they are not created by default.

• get_relation_sizes() returns the relation sizes in bytes and pretty-printed. A

relation’s total size is the sum of the actual table size, the size of related TOAST data

(The Oversized-Attribute Storage Technique), plus the size of related indexes.

• prewarm() calls pg_prewarm() for each table of TSEIT to load them into the bu�er

cache of PostgreSQL. This is useful for accelerating querying, especially after a

database restart.

43

5 Implementation

Figure 5.5 Generated plot of a small TSEIT tree, where

the numbers are the node IDs. The darker

a rectangle is, the more time series the cor-

responding leaf node contains.
0

1

5

2

6

3 47

• get_buffer_usage() returns for each TSEIT table the size of related pages in the

bu�er cache, together with the ratio of cached data to the total relation size.

All SQL queries are not hard-coded in the module code but moved to separate template

�les, which are plain SQL scripts with {} placeholders that are replaced by concrete values

using Python’s format() string method.

helpers.insert_ts_into_db This module allows inserting time series from a CSV �le

into the TSEIT index. The size of a transaction and a connection, both in terms of the

number of time series, can optionally be set. It is furthermore possible to write the progress,

including the number of inserted time series and the current node count, into a CSV �le

in intervals. The monitoring is performed in a separate thread with a function that calls

itself every given number of seconds.

When inserting many new rows in one single long-living database session, the memory

usage of PostgreSQL grows continuously. This behavior can not only be observed for

the TSEIT trigger functions, but also for simple stored PostgreSQL functions written in

procedural SQL instead of PL/Python. Therefore, it is not likely that the increase of memory

usage is caused by a bug in the implementation of TSEIT. A solution to avoid running out

of memory is reestablishing the connection in intervals. By default, a new connection is

established after 100,000 insertions.

helpers.analysis.visualize_progress This module provides a method for generating

a plot with Matplotlib that visualizes the insertion progress. It includes the number of

processed time series per second, TSEIT-related events such as splittings and reinsertions,

as well as PostgreSQL-related events like auto-vacuum executions and reconnects. It makes

use of pandas for parsing and �ltering a PostgreSQL CSV log �le and the CSV �le generated

with the logging option of insert_ts_into_db. For retrieving PostgreSQL events, it is

necessary that PostgreSQL writes its logs into a CSV �le (logging_collector = on and

log_destination = 'csvlog') and that the logging of auto-vacuum actions is enabled

(log_autovacuum_min_duration = 0).

helpers.analysis.evaluate_index This module provides several methods for evaluat-

ing the characteristics of the built index tree. Besides statistics on the nodes and distribu-

tion of time series among the leaf nodes, the total overlap between the leaf nodes can be

computed. Moreover, the module allows plotting the index tree like in Figure 5.5 using

Graphviz, and it allows creating plots of envelopes and time series using Matplotlib. The

distribution of nodes per level and time series per leaf node can additionally be plotted.

44

5.5 TSEIT Manager

helpers.analysis.integrity_tests This module implements the following tests that

shall ensure the integrity of the created index tree.

• Test, whether the number of time series held by the leaf nodes is equal to the number

of time series in the tseit_time_series table.

• Test, whether the envelope of each leaf node wraps the time series it holds. This is

done by calculating the target envelope for a leaf node’s time series and by comparing

the resulting upper and lower envelope sequences with the ones stored for the leaf

node.

• Test, whether the envelope of each inner node wraps the envelopes of its child nodes.

This is done analogously to the previous test.

helpers.analysis.config_tester The con�guration tester makes it possible to build

and evaluate the TSEIT index with di�erent con�gurations. It optionally generates all

parameter combinations speci�ed in a particular con�guration �le. For example, with

the following settings, six di�erent indexes are created and evaluated with three di�erent

splitting algorithms and two di�erent cost functions for traversal.

split_algo_leaf_node = kenvelopes, overlap_split, kmeans

choose_subtree_cost_fct = overlap_than_area, overlap_than_insertion_cost

The evaluation results are �nally written to a CSV �le, which is additionally converted to an

Excel spreadsheet using XlsxWriter with columns containing metric values appropriately

formatted. For example, in the metric column total_overlap, the cells’ background colors

are interpolated from green for the smallest value to red for the largest value, indicating

the quality of the value.

helpers.analysis.analyze_config_values This module provides a method for analyz-

ing the results of the con�guration tester to facilitate the detection of suitable con�guration

values. For this, average normalized metric values are calculated for each con�guration

value. A metric is, for example, the total overlap area or the node count. In Figure 5.6

following the con�guration tester settings above, the option split_algo_leaf_node is

to be analyzed. First, multiple row groups are �ltered so that the rows of a group only

di�er in the column of interest. Per row group, the metrics are then transformed to values

in the interval [0, 1], in order to make the metric values of di�erent groups comparable.

Finally, the mean of the normalized metrics is calculated for each possible value of the

target con�guration option.

preprocessing This folder contains a speci�c Python script for converting the datasets

that are used for evaluating TSEIT to CSV �les. It furthermore holds two general shell

scripts for sorting a CSV �le, optionally alternating, and for sampling rows of a CSV �le

by taking every i-th line and optionally shu�ing them in the end.

45

5 Implementation

split_algo_leaf_node choose_subtree_cost_fct reinsertion metric1 → metric1_norm

kenvelopes overlap_than_area True 0.1 0.0
overlap_split overlap_than_area True 0.3 0.23
kmeans overlap_than_area True 0.8 1.0

..
.

..
.

..
.

..
.

..
.

kenvelopes overlap_than_insertion. True 1 0.0
overlap_split overlap_than_insertion. True 7 1.0
kmeans overlap_than_insertion. True 4 0.5

Figure 5.6 Example supporting the introduction of the module analyze_config_values.

The mean normalized values for metric1 regarding split_algo_leaf_node are

0.0, 0.62, 0.75 for kenvelopes, overlap_split and kmeans, respectively. If lower values

are better for metric1, this result would indicate that kenvelopes is the best option.

5.6 Technical Evaluation

For the implementation of TSEIT, it was placed importance on high code quality. This is

con�rmed by static and dynamic program analysis as explained in the following.

5.6.1 Static Code Analysis

The source code satis�es Python’s PEP8 style guide
14

and follows reasonable recommen-

dations by the static code analysis tool Pylint
15

. Compliance with established coding

standards improves not only the readability but also the maintainability. Pylint, further-

more, helps to detect code smells and possible implementation errors.

The Python tool Radon
16

allows computing the cyclomatic complexity [McC76]. The

metric corresponds to the number of linearly independent paths through the code and

should be low to support code comprehension. It is incremented with each statement

that introduces a decision, e.g., if or for. The TSEIT package has an average cyclomatic

complexity of 3.5, whereas it is 6.4 for the TSEIT Manager (and 3.1 without the helpers

submodule). A cyclomatic complexity of up to 10 indicates a simple structure [For+97].

Certainly, code standards and metrics give only a hint on the actual quality of a software.

However, they, facilitate the detection of problematic parts of the code, which then can be

improved. This has been the case for the implementation process of TSEIT.

5.6.2 Profiling

Pro�ling is a dynamic program analysis technique for examining the runtime behavior of

a program. For Python, cProfile monitors how often and how long methods of a program

14
PEP 8 – Style Guide for Python Code: https://www.python.org/dev/peps/pep-0008/

15
Homepage of Pylint: https://www.pylint.org/

16
Radon in the Python package index: https://pypi.python.org/pypi/radon

46

https://www.python.org/dev/peps/pep-0008/
https://www.pylint.org/
https://pypi.python.org/pypi/radon

5.6 Technical Evaluation

0 1 × 106 2 × 106 3 × 106 4 × 106 5 × 106 6 × 106 7 × 106

number of inserted time series

0%

20%

40%

60%

80%

100%

s
h

a
r
e

o
n

t
h

e
t
o

t
a
l

r
u

n
t
i
m

e

Figure 5.7 Relative share of di�erent operations on the accumulated runtime for inserting 7 million

time series. The stacked bars describe from top to bottom:

� miscellaneous operations (4.2% − 7.4%),

� split a leaf node (2.3% − 2.4%),

� convert a Python list to a NumPy array (2.1% − 3.2%),

� calculate the area after insertion (2.7% − 4.2%),

� compute the segmentation of a time series for all levels (3.2% − 4.4%),

� calculate the overlap after insertion (6.3% − 11.3%),

� execute a database query (79.3% − 67.2%).

are executed. It is embedded in the TSEIT module and can be enabled in the con�guration

�le. As the insertion of one single time series takes only a small fraction of a second, it is

subject to �uctuations of the runtime. Therefore, the statistics for single insertions are

aggregated for reliable results. The insertion routine of TSEIT is wrapped by statements

for starting and stopping the pro�ling. Subsequently, a dump of previous pro�ling runs is

loaded from a �le, updated by the latest run, and resaved to disk.

The pro�ling results in Figure 5.7 using TSEIT’s default con�guration show that around

70% to 80% of the total runtime are spent for executing the prepared database statements.

This number can be interpreted in two ways: either the database is quite slow, or the

remaining parts of the program are very e�cient. As the share of the query execution

time on the total runtime has been signi�cantly lower (30% to 50%) in early stages of

development, it suggests that the remaining TSEIT code is indeed high-performing since

its share has reduced. Notice that both the creation of prepared statements and the splitting

of inner nodes are not shown in the plot, as their shares amount to merely 0.0002% and

0.06%, respectively.

Moreover, the absolute runtimes over the entire insertion process show that the execution

of database queries takes longer for the �rst one million time series, before stabilizing at a

lower value after around three million inserts. The execution time for database queries

furthermore �uctuates more than the execution time of other operations.

47

6 Evaluation

This chapter evaluates the index creation and querying process, and presents detailed

results of numerous test runs. First, the test environment and the datasets used are intro-

duced. A target de�nition is given subsequently, before metrics describing the index and

query evaluation are presented. An intensive test series evaluating di�erent con�gurations

for TSEIT is discussed hereinafter, including the e�ects of speci�c parameters. Following

this, the consequences of various insertion orders are revealed. Runtime behavior and

the size of the index structure is explained afterward, before the insertion and querying

of more than 100 million time series is presented. The chapter ends with a comparison

between TSEIT and the competing approach TWIST.

6.1 Setup

6.1.1 Environment

Most tests—especially all runtime tests—were executed on a virtual machine with the

following hardware and software speci�cation:

• host system:

– Intel Xeon CPU E5-2630 v4, with a single core performance of 2.20 GHz

– iSCSI over 10 GBit/s Ethernet

– 8 × 8 TB (Seagate ST8000DM005 with 7,200 rpm) as RAID 10

– Citrix XenServer 7.1 (hypervisor)

• guest system:

– 62.9 GB of RAM (+ 1.34 GB of swap)

– 345 GB data partition for PostgreSQL

– Ubuntu 16.04.3 LTS (GNU/Linux 4.4.0-109-generic x86_64)

– PostgreSQL server 9.6.5
(the con�guration �le is listed in Appendix A.2 on page 79)

– Python 3.5.2

49

6 Evaluation

6.1.2 Datasets

The datasets used for evaluating the TSEIT index are subsets of the Google Books American

English unigram (or 1-gram) and bigram (or 2-gram) dataset from July 2012
1
. An n-gram is

a contiguous sequence of n words from a given sentence. For example, the sentence “This

is great” contains the unigrams “This”, “is” and “great”, as well as the bigrams “This is”

and “is great”. The original datasets give for each n-gram occurring in a corpus of books

the number of occurrences per year, from 1505 to 2008. This results in one time series per

n-gram. As more books are published in later years, the counts are normalized by dividing

them by the number of books published in each particular year.

The following three subsets are used for evaluation. n-grams containing special characters

or additional annotations concerning the word type are left out.

7-million dataset This dataset contains 7,015,720 time series of length 209. They are

created from the unigram dataset based on the American English corpus, version 2012, for

the years 1800 to 2008 inclusive. The 1-grams satisfy the regular expression [^\W\d_]+

and thus neither contain any character that is not a word character, nor any decimal digit

or underscore. The uncompressed dataset has a size of 11 GB.

1-million dataset This dataset contains every 7-th time series of the 7-million dataset in

the original order for the years 1800 to 2000 inclusive, which results in 1,000,951 time

series of length 201. The uncompressed dataset has a size of 1.5 GB.

103-million dataset This dataset holds 103,462,118 time series of length 209. It is based on

the bigram dataset of the American English corpus, version 2012, and contains bigrams for

the years 1800 to 2008 inclusive. The 2-grams satisfy the regular expression [a-zA-Z]+

and thus contain only ASCII letters and spaces. From the 10,000 time series with the

largest sequence sum, every 100-th time series is moved to the beginning of the dataset, as

this is required for a special test concerning k-NN queries. The uncompressed dataset has

a size of 155 GB.

6.1.2.1 Characteristics of the Datasets

As provided by Google Books, the n-grams are basically sorted by their �rst letter. How-

ever, n-grams starting with the same letter are not always in perfect order. This almost

corresponds to a random order of the time series concerning their value ranges, with some

exceptions, e.g., for common n-grams starting with “the” or “a”.

The 7-million dataset contains far more unigrams than the English language has words.

Besides of containing rare words such as names, this is caused by errors in the text

recognition when creating the corpus on which the original dataset is based on. Therefore,

most of the time series have many tiny values close or equal to zero, as illustrated in

Figure 6.1. Similar observations hold for the bigram dataset. The uneven distribution

1
The Google Books n-gram datasets are freely available at https://books.google.com/ngrams/

50

https://books.google.com/ngrams/

6.1 Setup

0 1 2 3 4 5 6 7 8 9 10 11

sequence sum

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

c
o

u
n

t

Figure 6.1 Distribution of time series in the 7-million dataset. Note that the y-axis is log-scaled.

More than 99.99% of the time series have a sequence sum less than 0.05, represented by

the �rst bar. 90% of the time series have a sequence sum less than 10
−6

, while around

75% have a sum less than 2 × 10−7.

makes indexing and querying more challenging, especially for those time series that are

located in high-density areas where the sequences are concentrated.

6.1.3 k-NN Queries

Besides other metrics, the quality of the index is evaluated by the e�ort for di�erent k-NN

queries. The query time series are sampled from the 1-million dataset and are executed

with k = 1, and interval limits a = 1 and b = 201. Since the length of the interval

corresponds to the full length of the time series in the dataset, this is a worst-case scenario.

With smaller intervals, the querying e�ort is usually smaller as the query time series tend

to hit fewer leaf node envelopes.

Due to the highly uneven distribution of time series in the dataset, that contains a huge

number of rare n-grams which are unlikely to be queried in practice, two di�erent samples

are used for evaluation. While Sample 1 contains time series of existing words, that are

probably more interesting in actual practice, Sample 2 covers the remaining low-value

time series. Taken together, the entire value range is covered.

Sample 1 This sample holds 30 time series from the 1-million dataset for which the

sequence sum is ≥ 10
−3

. After sorting in descending order, every 52-th time series is

chosen from the 1,545 time series that satisfy the condition. The sample contains time

series representing real words such as “he” or “amazing”.

Sample 2 This sample holds 20 time series from the 1-million dataset for which the

sequence sum is < 10
−3

. After sorting in descending order, every 49,970-th time series is

chosen from the 999,406 time series that satisfy the condition. The sample contains time

series representing misspelled words and rare names such as “employd” or “Mauville”.

51

6 Evaluation

Parameter Default Value

min. number of child nodes cmin 2

max. number of child nodes cmax 3

min. number of time series per leaf node lmin 1

max. number of time series per leaf node lmax 1000

segmentation enabled

minimum segment length Tmin 1

cost function for traversal overlap and area after insertion

reinsertion enabled

splitting algorithm for leaf nodes k-envelopes

splitting algorithm for inner nodes k-envelopes

k-envelopes: cost function area after insertion

k-envelopes: alternating sorting disabled

Figure 6.2 The default con�guration of TSEIT.

6.1.4 Default Configuration

If not mentioned otherwise, the default con�guration as shown in Figure 6.2 is used for

building a TSEIT index.

6.2 Metrics

The primary aim of using an index structure is to accelerate querying. In this work,

the runtime for k-NN querying is mainly in�uenced by two factors: the number of tree

nodes to which an LBG lower-bound distance is calculated, and the number of exact DTW

computations. An e�cient query visits only a minimal number of inner nodes and leaf

nodes, and calculates the DTW distance to merely a fraction of all time series.

Solely minimizing the DTW count does not necessarily result in the best performance, as

this can favor trees with many leaf nodes holding only a few time series. In the worst case,

each leaf node contains only one time series. This, on the one hand, leads to few DTW

calculations, as most leaf nodes can already be eliminated with the LBG lower-bound

distance. On the other hand, traversal costs are high, and the LBG calculations still cause

e�ort. Similar e�ects occur vice versa. Therefore, both the LBG and the DTW count should

be minimized.

It is assumed that a tree with well-�lled leaf nodes and small envelopes that overlap only

slightly leads to optimal query performance. A large tree with many poorly �lled leaf

nodes provokes high traversal cost, whereas large envelopes are more likely to be hit by a

query time series, even though they do not necessarily contain a k-NN time series.

52

6.2 Metrics

k-NN Metrics Index Metrics

total / leaf

node count

mean

number of

t.s. per leaf

mean

leaf density

mean

leaf area

mean LBG count

Sample 1 0.89 −0.76 −0.79 −0.62

Sample 2 1.00 −0.96 −0.89 −0.83

mean DTW count

Sample 1 −0.40 0.73 0.68 0.75

Sample 2 −0.52 0.70 0.63 0.69

Figure 6.3 Pearson correlation coe�cients for the relationship between index metrics and k-NN

metrics for all test runs of this work. A value of 0 means no correlation, a value of ±1

means a perfect linear relationship. As the total node count and the leaf node count

have almost equal correlation coe�cients, they are combined in this table.

6.2.1 Index and k-NN Metrics

To evaluate the quality of an index, the following metrics are obtained. The terms “envelope”

and “node” are used synonymously.

• index metrics:

– number of nodes, leaf nodes, and tree levels

– leaf area

– number of time series per leaf node

– density of a leaf node: number of contained time series divided by its area

– total overlap area of the leaf nodes

• k-NN metrics:

– number of LBG, LB_Kim, and DTW calculations

More sophisticated metrics such as the total length of the subsequences within overlapping

envelope areas were less informative than expected. They were therefore discarded.

6.2.2 Correlation between Metrics

Performing and evaluating many k-NN queries can be more time-consuming than actually

building the index. Thus, it is desirable to have a metric on the built index that gives an

estimate on the querying e�ort. For this reason, the Pearson correlation between the k-NN

metrics LBG and DTW count, and index metrics such as the leaf count or overlap was

computed regarding almost all tests ever performed for this work.

Figure 6.3 shows the strongest correlations between the k-NN metrics and index metrics.

The results are intuitive: the more nodes an index tree has, the more LBG calculations are

required. On the other hand, fewer DTW calculations are needed, as many nodes—and

thus time series—can already be discarded by the LBG distance. The other index metrics

53

6 Evaluation

themselves are more or less correlated to the node count. The more nodes, the fewer time

series are held by the leaf nodes, which is a negative correlation. Leaf nodes with a low

density have either large envelopes or contain only a few time series resulting in many

nodes, again. The mean leaf area is also inversely correlated to the LBG count; probably,

as small envelopes tend to contain few time series, which leads to more nodes to which an

LBG distance needs to be calculated. On the other hand, this reduces the DTW count for

the same reasons as above.

Interestingly, the overlap between leaf nodes was not strongly correlated to the k-NN

metrics in most test series. This could be caused by the fact that the time series in the used

datasets are highly unevenly distributed, which is why overlapping cannot be avoided.

In contrast, for the test series presented in Figure 6.4 on page 57, the total leaf overlap is

strongly positively correlated to the LBG and DTW count for Sample 1 by 0.89 and 0.72,

respectively. However, for Sample 2, no strong correlation is measurable (0.25 and 0.32 for

the LBG and DTW count, respectively). Note that in this test series the overlap and thus

the correlation was not computed for all runs.

6.3 Parameter Evaluation

Chapter 4 introduces many parameters concerning the index construction. There are

di�erent tree topologies, multiple cost functions and splitting algorithms, and the optional

reinsertion and segmentation. This results in a large number of possible con�gurations

for building a TSEIT index. Using metrics describing the resulting index tree and executed

k-NN queries, the numerous parameter combinations were evaluated.

Figure 6.4 on page 57 lists detailed evaluation results for runs with di�erent parameter

values, whereby some parameters are �xed for all runs. Latter ones are introduced �rst,

before the e�ects of di�erent parameter values are discussed.

As implied by the table, using the default con�guration, TSEIT calculates the DTW distance

to averagely 0.1% and 19.5% of the time series of Sample 1 and Sample 2, respectively.

6.3.1 Common Parameter Values

Maximum number of time series per leaf node First tests showed that for the 1-million

dataset, a maximum of 1,000 time series per leaf node results in fewer DTW calculations

than a larger limit of 5,000 or 10,000 time series. Thus, all following tests used lmax = 1,000.

Number of child nodes Regarding the minimum and the maximum number of child nodes,

cmin and cmax respectively, the results were less clear after tests with (cmin, cmax) values of

(2, 3), (3, 5) and (5, 10). As the results di�ered not drastically, cmin = 2 and cmax = 3 were

chosen for subsequent tests since results tended to be slightly better with these values.

Reinsertion After determining that reinsertion clearly improves the overall results, it

was used for all following test runs.

54

6.3 Parameter Evaluation

Segmentation Segmentation with a minimum segment length of Tmin = 1 was used for

most tests, as this is a core concept of TSEIT to save processing time and storage space.

Moreover, further tests indicated that the segmentation does not necessarily increase the

LBG and DTW count signi�cantly.

6.3.2 Varying Parameter Values

Minimum number of time series per leaf node Not enforcing a minimum number of time

series per leaf nodes results in smaller leaf envelopes that furthermore overlap less. This

is not surprising, as with lmin = 1, the splitting algorithms do not necessarily have to

assign time series with very di�erent value ranges to the same node. However, only the

splitting algorithms k-envelopes and, to some extent, k-means can produce a compact

tree, where the leaf nodes are well-�lled. Overlap Split with lmin = 1 leads to leaf nodes

that contain on average fewer than 35 time series, although up to 1,000 are allowed. As

a consequence, the resulting tree is very large and deep, which especially increases the

number of required LBG calculations and thus degrades the runtime. For k-envelopes

it is crucial to use the cost function area after insertion for assigning time series to one

of the two envelopes. This ensures, in contrast to the other possible cost functions, that

the nodes are in most cases evenly sized after splitting. With these settings, k-envelopes

creates leaf nodes holding merely a few time series, only if necessary.

A larger minimum time series count of lmin = 300 does not necessarily impair the results,

as it guarantees that the tree does not grow extensively. It limits the number of nodes and

thus the number of required LBG calculations for k-NN queries.

By default, lmin = 1 as it gives good results together with a proper con�guration of k-

envelopes. It furthermore works well with an arbitrary value for lmax. Moreover, additional

tests not listed here have shown that smaller lower limits lead to better results on average.

Cost function for traversal Concerning the cost function for choosing the subtree to insert

a new time series (cf. Section 4.3.1 on page 21), the results are quite clear. Previous tests

already showed that the simple cost functions area after insertion and insertion cost do

not yield good results. However, applying those as a second cost function after the

overlap cost function signi�cantly improves the outcome. Comparing overlap and area
after insertion and overlap and insertion cost, the table clearly shows that the former works

better, especially for the k-NN metrics. In case of a tie for the overlap, the former cost

function chooses the envelope that would be smaller after insertion, while the latter also

takes the delta into account. overlap and area after insertion also results in 15% fewer leaf

nodes on average, which consequently hold more time series. Since this is usually a

preferred property, that function is used by default.

Splitting algorithm for leaf nodes Regarding runs with a minimum leaf size lmin = 300,

the Overlap Split algorithm is superior to k-envelopes in many metrics. It produces leaf

nodes with smaller areas, the highest density, and still small overlap. On the other hand,

the leaf nodes often contain fewer time series on average, and the number of required

55

6 Evaluation
m

i
n

.
l
e
a
f

s
i
z
e

t
r
a
v
e
r
s
a
l

c
o

s
t

f
c
t
.

s
p

l
i
t

l
e
a
f

n
o

d
e

s
p

l
i
t

i
n

n
e
r

n
o

d
e

k
-
e
n

v
.

c
o

s
t

f
c
t
.

k
-
e
n

v
.

a
l
t
e
r
n

a
t
i
n

g

l
e
a
f

n
o

d
e

c
o

u
n

t

m
e
a
n

l
e
a
f

d
e
n

s
i
t
y

m
e
a
n

l
e
a
f

a
r
e
a

m
a
x
.

l
e
a
f

a
r
e
a

t
o

t
a
l

l
e
a
f

a
r
e
a

t
o

t
a
l

l
e
a
f

o
v
e
r
l
a
p

S
a
m

p
l
e

1
:

m
e
a
n

L
B

G
c
o

u
n

t

S
a
m

p
l
e

1
:

m
e
a
n

D
T

W
c
o

u
n

t

S
a
m

p
l
e

2
:

m
e
a
n

L
B

G
c
o

u
n

t

S
a
m

p
l
e

2
:

m
e
a
n

D
T

W
c
o

u
n

t

300 oa ke ke a × 1,409 1.3e+9 6.8e−4 0.92 0.96 1.59 25 1,296 2,369 194,387
? 1 oa ke ke a × 1,420 1.3e+9 4.3e−4 0.29 0.61 1.72 32 1,172 2,384 194,845

300 oa ke os a X 1,434 1.4e+9 7.9e−4 0.92 1.13 2.32 41 1,949 2,425 196,848
1 oa ke ke a X 1,435 1.6e+9 4.5e−4 0.28 0.65 1.81 37 1,474 2,427 198,617
1 oa ke os a X 1,440 1.4e+9 4.5e−4 0.28 0.64 1.88 37 1,332 2,447 195,013

300 oa ke ke a X 1,450 1.2e+9 7.8e−4 0.92 1.13 2.39 38 1,949 2,471 196,808
300 oa ke ke oa X 1,460 1.3e+9 8.5e−4 0.92 1.25 2.17 26 1,204 2,484 198,369
300 oa ke ke oi X 1,467 1.2e+9 8.5e−4 0.92 1.25 2.18 28 1,204 2,490 195,342
300 oa ke ke i X 1,487 9.2e+8 7.6e−4 0.92 1.13 2.54 40 3,102 2,514 203,537
300 oa ke ke oi × 1,498 1.3e+9 6.4e−4 0.92 0.96 1.88 29 1,405 2,525 199,039
300 oa os ke a X 1,491 1.5e+9 6.4e−4 0.92 0.96 1.85 26 1,332 2,540 199,595
300 oa ke ke i × 1,505 1.1e+9 6.4e−4 0.92 0.96 1.92 27 1,389 2,540 200,618
300 oa ke ke oa × 1,494 1.3e+9 6.4e−4 0.92 0.96 1.89 29 1,405 2,548 198,659
300 oa os os – – 1,503 1.6e+9 6.4e−4 0.92 0.96 1.87 25 1,341 2,562 196,866
300 oi os ke a X 1,525 1.5e+9 6.3e−4 0.92 0.96 1.90 26 1,445 2,655 203,202

1 oi ke ke a X 1,537 1.1e+9 4.1e−4 0.28 0.63 2.33 44 1,729 2,658 198,440
300 oi ke ke a × 1,533 1.2e+9 6.2e−4 0.92 0.96 1.91 27 1,351 2,694 194,827
300 oi ke os a X 1,540 1.0e+9 1.2e−3 0.92 1.86 7.66 72 2,680 2,707 201,222
300 oi ke ke a X 1,544 1.2e+9 1.2e−3 0.92 1.90 8.15 71 2,610 2,710 199,486
300 oi os os – – 1,551 1.4e+9 6.2e−4 0.92 0.96 2.03 25 1,440 2,724 201,552

1 oi ke os a X 1,573 1.0e+9 4.1e−4 0.28 0.64 2.60 47 1,818 2,744 198,194
1 oi ke ke a × 1,587 1.1e+9 3.9e−4 0.29 0.62 2.47 39 1,169 2,779 197,050

300 oi ke ke oi X 1,697 1.0e+9 8.0e−4 0.92 1.37 3.15 40 1,674 2,983 199,995
300 oi ke ke i X 1,698 9.1e+8 8.6e−4 0.92 1.46 7.03 81 2,729 2,996 203,324

1 oa km ke a × 1,787 1.0e+9 3.2e−4 0.29 0.57 2.29 28 1,276 3,044 198,426
300 oi ke ke oa X 1,721 9.5e+8 6.5e−4 0.92 1.11 2.76 36 1,512 3,073 197,269
300 oi ke ke oi × 1,775 1.1e+9 5.5e−4 0.92 0.97 2.59 32 1,350 3,151 196,836
300 oi ke ke oa × 1,783 1.0e+9 5.5e−4 0.92 0.97 2.60 32 1,350 3,163 197,655
300 oi ke ke i × 1,883 9.1e+8 5.2e−4 0.92 0.97 2.89 29 1,395 3,401 201,302

1 oi km ke a × 2,088 5.1e+8 2.7e−4 0.29 0.57 3.07 32 1,272 3,765 212,329
1 oa ke ke i X 26,574 3.1e+8 2.6e−5 0.27 0.69 ∗ 109 1,204 47,052 187,066
1 oi ke ke i X 28,350 3.3e+8 2.4e−5 0.26 0.67 ∗ 95 1,497 51,005 177,879
1 oa ke ke oa X 34,029 3.5e+8 1.8e−5 0.24 0.60 ∗ 122 1,098 52,189 181,496
1 oi os os – – 28,799 5.4e+8 2.3e−5 0.24 0.67 ∗ 116 1,100 52,967 176,882
1 oa os os – – 28,661 6.4e+8 2.4e−5 0.26 0.69 ∗ 121 888 53,054 176,180
1 oa ke ke oi X 34,422 3.7e+8 1.7e−5 0.24 0.59 ∗ 124 1,040 53,344 177,548
1 oa ke ke i × 36,723 1.8e+8 2.0e−5 0.24 0.74 ∗ 237 1,140 54,367 192,193
1 oa ke ke oa × 36,258 2.3e+8 2.2e−5 0.26 0.79 ∗ 241 1,169 54,780 190,774
1 oi os ke a X 30,094 6.9e+8 2.4e−5 0.24 0.72 ∗ 130 1,252 55,491 176,214
1 oa os ke a X 30,084 5.1e+8 2.3e−5 0.24 0.71 ∗ 112 1,030 56,124 173,510
1 oa ke ke oi × 36,879 1.5e+8 2.1e−5 0.26 0.79 ∗ 337 1,305 56,630 195,797
1 oi ke ke oi X 37,181 2.6e+8 1.6e−5 0.24 0.59 ∗ 119 1,201 58,271 184,826
1 oi ke ke oa X 38,098 3.0e+8 1.5e−5 0.24 0.58 ∗ 107 1,350 59,717 177,252
1 oi ke ke i × 52,163 1.2e+8 1.4e−5 0.24 0.70 ∗ 280 1,386 81,609 192,220
1 oi ke ke oi × 53,818 1.6e+8 1.5e−5 0.24 0.81 ∗ 382 1,095 83,244 184,224
1 oi ke ke oa × 54,858 1.4e+8 1.4e−5 0.24 0.79 ∗ 395 1,081 85,999 185,475

TWIST: 2,134 7.9e+8 2.8e−4 0.22 0.60 3.69 2,557 2,345 12,301 213,498

? default con�guration, – not required, ∗ not calculated (too many leaf nodes)

56

6.3 Parameter Evaluation

Figure 6.4 (on previous page) Table with evaluation results for di�erent con�gurations of TSEIT

with the 1-million dataset, ordered by the column Sample 2: mean LBG count.

The following abbreviations are used:

Cost functions (cf. Sec. 4.3.1, p. 21): Splitting algorithms (cf. Sec. 4.3.2, p. 23):

• a: area after insertion • km: k-means

• i: insertion cost • ke: k-envelopes

• oi: overlap and insertion cost • os: Overlap Split

• oa: overlap and area after insertion

The runs share the following settings (time series per leaf holds for TWIST, too):

• min. number of child nodes: 2 • segmentation: enabled

• max. number of child nodes: 3 • min. segment length: 1

• max. number of t.s. per leaf: 1,000 • reinsertion: enabled

The green-yellow-red shading indicates the goodness of a value in regard to the other

values of the respective column, while the blue shades are for better visual distinction

only. The minimum and maximum values per column are highlighted in bold. The

LBG and DTW counts refer to a set of k-NN queries (cf. Section 6.1.3 on page 51) and

are rounded to the nearest whole number.

LBG and DTW calculations is higher, especially for Sample 2. The k-envelopes algorithm,

on the other hand, performs better on the k-NN queries and supports lmin = 1, which in

general allows a better adaption of the leaf envelopes to the dataset. k-means performs

well on Sample 1, as it produces envelopes of a small area. However, it produces 25% to

60% more leaf nodes, which especially degrades the performance for Sample 2. To sum up,

the novel k-envelopes algorithm developed in this work gives the best results overall.

Splitting algorithm for inner nodes Both k-envelopes and Overlap Split perform well on

splitting inner nodes. As in this test series splitting is always performed with four envelopes

only (due to cmax = 3), both algorithms often yield the same results. Comparing runs that

only di�er in the splitting algorithm for inner nodes, k-envelopes tends to produce trees

with slightly more leaf nodes which, however, are smaller and overlap marginally less.

Furthermore, the number of LBG and DTW calculations is in many cases slightly lower.

Hence, for the evaluation dataset, the best results were achieved using the novel algorithm

k-envelopes.

Remember that k-means cannot be used for splitting inner nodes, as it does not support a

minimum cluster size. However, this is required, as cmin, the minimum number of child

nodes, must be at least two.

Settings for k-envelopes Using k-envelopes for splitting leaf nodes together with a mini-

mum leaf size lmin = 1, the results clearly indicate that the cost function area after insertion
performs best. Using any of the other three cost functions results in a degenerated tree

with a huge number of sparse leaf nodes, that provoke high traversal costs. For larger

values of lmin, the results are less clear since all cost functions lead to good results.

57

6 Evaluation

i
n

s
e
r
t
i
o

n
o

r
d

e
r

l
e
a
f

n
o

d
e

c
o

u
n

t

m
e
a
n

l
e
a
f

d
e
n

s
i
t
y

m
e
d

i
a
n

l
e
a
f

a
r
e
a

t
o

t
a
l

l
e
a
f

o
v
e
r
l
a
p

S
a
m

p
l
e

1
:

m
e
a
n

L
B

G
c
o

u
n

t

S
a
m

p
l
e

1
:

m
e
a
n

D
T

W
c
o

u
n

t

S
a
m

p
l
e

2
:

m
e
a
n

L
B

G
c
o

u
n

t

S
a
m

p
l
e

2
:

m
e
a
n

D
T

W
c
o

u
n

t

original 1,420 1.3e+9 1.4e−6 1.72 32 1,172 2,384 194,845
shu�ed 1,426 1.4e+9 1.4e−6 1.69 30 1,102 2,400 195,202
descending 1,444 1.2e+9 1.6e−6 2.67 54 1,323 2,347 213,057
alternating 1,472 1.2e+9 1.6e−6 2.79 59 1,141 2,405 202,566

Figure 6.5 Metrics of runs with di�ering insertion order using the default con�guration. The

test run with shu�ed insertion order produces few large leaf nodes, which is why the

median is listed instead of the mean value.

Sorting the sequences in alternating order before assigning them to the clusters or en-

velopes aims to facilitate the creation of strongly di�ering clusters. With a minimum leaf

size lmin = 300, the algorithm is forced to �ll one envelope once the other has reached its

maximum size. In this case, the remaining sequences usually have a larger distance to

each other than they would have with ascending order. This generally results in larger

envelopes as listed in the table. With alternating order, the DTW count is higher for

Sample 1, but lower for Sample 2. Ascending order, on the other hand, leads to more, yet

smaller leaf nodes.

6.4 Insertion Order

Like many index trees such as the R-tree, TSEIT is in�uenced by the order in which the

data is inserted. While a TSEIT tree is always height-balanced, the node count, area and

overlap of the leaf nodes can di�er. Figure 6.5 lists metrics after having inserted the time

series in original order, shu�ed, or ordered by descending or by alternating sequence sum

(schematic: N , 1, (N − 1), 2, . . . for N sequences). Remember, that the original order is

almost random regarding the value ranges as explained in Section 6.1.2.1 on page 50.

The results indicate that a random insertion order works best and that there is no bene�t

in sorting the time series in the �rst place. However, although there are di�erences,

especially for the DTW count with Sample 2, they are not that strong with respect to the

corresponding value ranges of the table in Figure 6.4.

6.5 Insertion Time

Using a tree structure together with segmentation and numerous performance optimiza-

tions of the implementation are worth it. TSEIT is able to index large numbers of time

58

6.6 Index Size

indexing 7 million time series insertion time mean insertion rate index size

TSEIT default 13.5 h 144 ts/sec 56 MB

TSEIT without segmentation 25 h 77 ts/sec 65 MB

TWIST (estimation) > 770 h < 2.5 ts/sec ∼ 55 MB

Figure 6.6 Comparison of the runtime for inserting the time series from the 7-million dataset,

together with the total size of the index table tseit_index, including the PostgreSQL

index on the column parent_id. TSEIT was built with the default con�guration, once

without segmentation; TWIST with a maximum node size of 1,000 time series.

TWIST was manually canceled after having inserted 2.8 million time series in 190 hours

(cf. Figure 6.9 on page 64), resulting in an index size of 22 MB. The values in the table

are optimistically extrapolated assuming a constant—non-decreasing–insertion rate

of 2.0 ts/sec (the mean rate of the last 6 hours before aborting) for the remaining

4.2 million time series. The true insertion time would be even higher than estimated.

series at a nearly constant insertion rate. As illustrated in Figure 6.7, more than 7 million

time series are indexed in 13.5 hours with an average insertion rate of 145 time series per

second. This is a remarkable result, especially in comparison to TWIST that during the

same time only indexes around 11% of the data, as described in Section 6.8 on page 63.

The plot furthermore shows that reinsertions and splittings of leaf nodes occur evenly

distributed, indicating a reasonable index creation. Inner node splittings sometimes oc-

cur slightly more frequently, which, however, can be explained by the propagation of

splittings.

It seems that the increase of the insertion rate after around one million insertions is caused

by PostgreSQL, which executes more analysis operations and presumably creates more

storage pages in the early beginning. This is also indicated by the pro�ling results in

Figure 5.7 on page 47, and was observed to varying degrees in all runs.

Disabling segmentation signi�cantly reduces the average insertion rate to 77 ts/sec, result-

ing in a total insertion time of around 25 hours for the 7-million dataset. As the envelopes

are stored in full resolution now, the e�ort for retrieving and updating rows in the database

and the cost of calculations on the envelopes is much higher.

The query runtime was not monitored in most cases for practical reasons, as this requires

executing only one query at the same time. Usually, however, tests were executed in parallel

making it unfeasible to obtain reliable time measurements. Appendix A.3.1 on page 81,

on the other hand, lists some exemplary k-NN queries on the 7-million dataset—together

with the required execution time for exclusive runs.

6.6 Index Size

For the evaluation runs, the TSEIT index is approximately 8 MB in size per one million

time series (of length 201 or 209). As listed in Figure 6.6, the 7-million dataset requires

59

6 Evaluation

100

120

140

160

180

i
n

s
e
r
t
i
o

n
r
a
t
e

(
t
i
m

e
s
e
r
i
e
s

/
s
e
c
o

n
d

)

0

8,000

16,000

n
o

d
e

c
o

u
n

t

Nodes and levels

5

10

l
e
v
e
l

c
o

u
n

t

nodes

levels

reinsert

Events

leaf split

inner split

reconnect

vacuum

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00

insertion time (h:m)

analyze

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

i
n

s
e
r
t
e
d

t
i
m

e
s
e
r
i
e
s

Insertion progress

inserted time series

insertion rate (+ mov. avg.)

Figure 6.7 Indexing the 7-million dataset using TSEIT with the default con�guration. The upper

part shows the number of inserted time series, together with the insertion rate and a

moving average. The middle part plots the logarithmically increasing number of tree

levels together with the total number of tree nodes.

In the bottom part, several histograms describe index and database related events. The

height of a bar indicates the number of events within a time interval of 150 seconds.

Note that the vertical axes of the histograms are scaled di�erently.

The reconnects are explicitly triggered by the insertion module of the TSEIT Manager ,
while the vacuum and analyze operations for garbage collection and table analysis are

automatically executed by PostgreSQL.

60

6.7 Inserting and Querying 103 Million Time Series

56 MB of disk space, while the index of the 103-million dataset (cf. Section 6.7) is 821 MB

in size. Consequently, the index table can entirely be loaded into the shared bu�er cache

of PostgreSQL (see get_buffer_usage()). As the bu�er is located in memory, slow disk

access is minimized.

Moreover, increasing the minimum segment length Tmin further reduces the storage size.

This enables the user to e�ectively control the index size, which may be useful for indexing

even larger datasets.

For retrieving the actual index size by the custom get_relation_sizes() function, a

VACUUM FULL was executed at �rst to rewrite the tables and reclaim unused disk space.

Otherwise, the total size would include dead tuples, too.

6.7 Inserting and Querying 103 Million Time Series

As visualized in Figure 6.8a, TSEIT indexes the time series of the 103-million dataset in

251.8 hours (10.5 days) with an average insertion rate of 113.3 ts/sec. The fact that the

insertion rate decreases (almost) only linearly proves that TSEIT is e�cient and able to

index large datasets. The �nal tree has 257,437 nodes at 16 tree levels, including 146,929
leaf nodes that hold on average 704 time series (25-th, 50-th, and 75-th percentile: 574, 695,

and 835 time series per leaf node, respectively).

To evaluate the e�ciency of the k-NN queries with growing dataset size, 100 1-NN queries

were executed after every 500,000-th insertion for the 103-million dataset. The query time

series were chosen by sorting the dataset by ascending sequence sum and taking 100 times

every 100-th time series. They have been indexed �rst.

The evaluation results in Figure 6.8b show that both the number of required LBG and

DTW calculations increases approximately linear with the size of the dataset, whereby

the LBG count grows slower than the DTW count. The query runtime is mainly a�ected

by the number of DTW calculations, as indicated by the apparent correlation of both lines

in the plot. Substantial increases in the number of the DTW calculations are probably

explained by the value ranges of the inserted time series, which are not entirely evenly

distributed. When the tree is reorganized by the reinsertion of time series, the number of

LBG and DTW calculations can drop when, as a result, fewer subtrees need to be visited.

This happens several times as the plot shows. The in the end rather long average runtime

for the k-NN queries is put into perspective, considering the ratio of the required DTW

calculations to the actual size of the dataset: it decreases logarithmically and settles at

around 0.006%. In other words, TSEIT calculates the DTW distance to merely 0.006% of all

time series in this dataset on average. For other queries, especially with a smaller search

interval, this ratio might be even smaller like presented in Appendix A.3.2 on page 86.

Note that in this test run the TSEIT index was built with the default con�guration, which,

however, is not necessarily optimal for such a vast dataset. Especially a larger number of

child nodes might be useful to limit the depth of the tree and to increase the resolution of

the segmented envelopes in the upper tree levels.

61

6 Evaluation

0

20

40

60

80

100

120

140

160

180

i
n

s
e
r
t
i
o

n
r
a
t
e

(
t
i
m

e
s
e
r
i
e
s

/
s
e
c
o

n
d

)

0:00 24:00 48:00 72:00 96:00 120:00 144:00 168:00 192:00 216:00 240:00

insertion time (h:m)

0

10

20

30

40

50

60

70

80

90

100

i
n

s
e
r
t
e
d

t
i
m

e
s
e
r
i
e
s

i
n

m
i
l
l
i
o

n
s

(
1
0
6
)

Insertion progress

inserted time series

insertion rate (+ mov. avg.)

(a) The insertion process with a total runtime of 251.8 hours (10.5 days) and an average insertion

rate of 113.3 ts/sec.

0 10 20 30 40 50 60 70 80 90 100

size of the index in million (10
6
) time series

0

1,000

2,000

3,000

4,000

5,000

6,000

�
m

e
a
n

D
T

W
c
o

u
n

t

0

10

20

30

40

50

60

70

80

90

100

110

120

130

�
m

e
a
n

L
B

G
c
o

u
n

t

0.0%

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

0.07%

0.08%

�
m

e
a
n

D
T

W
/

t
i
m

e
s
e
r
i
e
s

c
o

u
n

t

0

10

20

30

40

50

60

70

80

�
m

e
a
n

r
u

n
t
i
m

e
(
s
e
c
.)

mean LBG count

mean DTW count

mean ratio of DTW to time series count

mean runtime

(b)At intervals of 500,000 inserts, 1-NN queries were executed for 100 time series. The strong

increases of the DTW calculations are caused by the insertion of time series with large values,

the decreases by tree restructurings by splits and reinsertions.

Figure 6.8 Indexing and querying the 103-million dataset in two separate runs using TSEIT with

the default con�guration.

62

6.8 Comparison with TWIST

6.8 Comparison with TWIST

Unlike TSEIT, TWIST is a �at data structure, which strongly impacts the scalability and

query performance.

As shown in Figure 6.4 on page 57, querying with TWIST is more costly than using a TSEIT

index. While TSEIT requires between 25 and 80 LBG calculations for querying the time

series of Sample 1, TWIST calculates the distance up to a hundred times more often. Not

using a tree structure, all envelopes need to be accessed, what consequently sets a lower

limit for the number of LBG calculations. TSEIT, in contrast, omits entire subtrees and thus

does not need to visit all nodes. Note that TWIST uses the LBG function as introduced in

Section 3.3.3.2 on page 12, while TSEIT applies the modi�ed LBG distance as in Section 4.4.2

on page 32 in order to handle subsequences and segments of di�erent lengths. Besides the

LBG count, also the number of DTW calculations is higher for TWIST in the evaluation

runs. This is even the case, if a larger leaf size of 10,000 is used (resulting in 1,642 and

228,381 DTW calculations on average for Sample 1 and Sample 2, respectively).

TWIST can be considered as a one-level tree where all nodes are leaf nodes (the root node

is not explicitly modeled). From this perspective, the evaluation shows that a TWIST

index holds more leaf nodes than a corresponding TSEIT index. Consequently, the nodes

contain fewer time series on average and thus, the leave envelopes tend to be smaller

while overlapping more in total. On the other hand, regarding the entire structures, TSEIT

holds more nodes, as it is a multi-level tree with additional inner nodes. Therefore, given

that leaf node envelopes are stored with full resolution (either due to Tmin = 1 or without

segmentation at all), a corresponding TWIST index is smaller in terms of storage space.

However, since TSEIT allows increasing the minimum segment length Tmin, the required

storage space can be reduced as desired. This is not possible with TWIST that always

stores envelopes in original length without segmentation. Only when a query is evaluated,

TWIST computes the segments for all envelopes. This not only eliminates the possibility

to save storage space but especially a�ects the query runtime.

The most signi�cant drawback of TWIST is its poor scalability of the index creation. As

visualized in Figure 6.9, the insertion rate decreases logarithmically since the algorithm

needs to iterate through all envelopes in order to determine an appropriate one. Already

after a few hundred-thousand inserted time series, the rate drops to less than 20 ts/sec and

soon to impracticable 2 ts/sec and even less. This makes TWIST un�t for processing big

data. In contrast, TSEIT traverses a tree examining only a small fraction of nodes to insert a

new time series. Figure 6.10 shows that during the time in which TSEIT indexes the entire

7-million dataset, TWIST inserts only 11% of the time series (750,000). After 190 hours,

TWIST has indexed only 2.8 million time series, whereas in the same time TSEIT can index

around 80 million time series at still around 100 ts/sec (103-million dataset, cf. Figure 6.8a).

An additional comparison of TSEIT’s and TWIST’s insertion rate and index size is given

in Figure 6.6 on page 59.

63

6 Evaluation

0

20

40

60

80

100

120

140

160

180

i
n

s
e
r
t
i
o

n
r
a
t
e

(
t
i
m

e
s
e
r
i
e
s

/
s
e
c
o

n
d

)

0:00 24:00 48:00 72:00 96:00 120:00 144:00 168:00 192:00

insertion time (h:m)

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

i
n

s
e
r
t
e
d

t
i
m

e
s
e
r
i
e
s

Insertion progress

inserted time series

insertion rate (+ mov. avg.)

Figure 6.9 Indexing the �rst 2.8 million time series of the 7-million dataset using TWIST. The

insertion rate is logarithmically decreasing from 180 ts/sec in the very beginning to

only 2.0 ts/sec after 190 hours.

0

20

40

60

80

100

120

140

160

180

i
n

s
e
r
t
i
o

n
r
a
t
e

(
t
i
m

e
s
e
r
i
e
s

/
s
e
c
o

n
d

)

0 1 × 106 2 × 106 3 × 106 4 × 106 5 × 106 6 × 106 7 × 106

number of inserted time series

0:00

24:00

48:00

72:00

96:00

120:00

144:00

168:00

192:00

i
n

s
e
r
t
i
o

n
t
i
m

e
(
h

:
m

)

Insertion progress

TSEIT: inserted time series

TSEIT: insertion rate (+ mov. avg.)

TWIST: inserted time series

TWIST: insertion rate (+ mov. avg.)

Figure 6.10 Direct comparison of TSEIT and TWIST concerning the insertion of the time series

from the 7-million dataset. The runs are the same as in Figure 6.7 on page 60 and

Figure 6.9. TWIST was manually canceled after having inserted 2,8 million time series

in 190 hours.

64

7 Conclusion and Future Work

This last chapter gives a brief conclusion on the content and �ndings of this work and

�nally proposes future work.

7.1 Conclusion

The aim of this work was the development of an e�cient technique for �nding the k
nearest neighbors of a given time series within a speci�ed time interval. In recent decades

numerous approaches for whole matching or subsequence matching have been proposed.

Former ones compare entire time series of equal length, while the latter retrieve similar

subsequences contained in other time series, no matter at which position. Focusing on a

search within arbitrary user-de�ned time intervals, in contrast, is a topic not exhausted in

research.

In this work, the height-balanced index structure TSEIT was designed, implemented

and evaluated. It enables exact k-NN searches in arbitrary time intervals without false

dismissals. The basic idea is to group similar time series and to store a representative of

each group—a so-called envelope—in an R-tree-like data structure. A leaf node envelope

tightly wraps the time series held by the leaf, while the envelope of an inner node spans

the envelopes of its child nodes. The index creation algorithm aims to create leaf node

envelopes that are well-�lled, have a small area and overlap only slightly. As it can handle

typical sequence transformations like shifting and scaling, the DTW distance is used as

the similarity measure for time series.

To �nd the nearest neighbors of a given query time series, the TSEIT tree is traversed,

descending only into those subtrees to which the LBG lower-bound distance is not larger

than the minimum DTW distance found so far. The lower-bound distance to an envelope

representing a subtree or leaf node is guaranteed to be smaller than (or equal to) the

distance to any of the time series it wraps. Conversely, this means that a k-NN time series

cannot be within an envelope for which the lower-bound distance is already larger than

the exact best-so-far distance. In this case, the subtree or leaf node represented by the

envelope can be omitted. Thus, the exact DTW distance has to be calculated for only a

fraction of all time series in the TSEIT tree.

To accelerate tree traversal and to reduce storage requirements, the envelopes are usually

stored with reduced dimensionality. They are approximated by so-called segments that

are de�ned by the maximum and minimum envelope values within consecutive intervals.

While the segment length is minimal at the leaf level, it doubles with each level up to the

65

7 Conclusion and Future Work

root node. Hence, the upper tree levels hold envelopes of lower dimensionality, whereas

the tightness of the lower bound increases when descending to deeper tree levels. The

quality of the index tree is improved by occasionally deleting time series and reinserting

them into the tree. This results in overall tighter envelopes, as the reinserted time series

often land up in a more suitable part of the tree.

A novel clustering algorithm called k-envelopes for splitting nodes during index creation

was developed in this work. It is based on ideas of Lloyd’s k-means algorithm but tailored

to the needs of TSEIT. For example, it allows de�ning a minimum cluster size and supports

various cost functions for assigning sequences to clusters. The alternatively supported

clustering algorithm Overlap Split is an adaption of the R*-tree’s splitting technique.

Although this algorithm works better than the established k-means algorithm, it did

slightly worse in the evaluation than k-envelopes, which outperformed both methods.

The TSEIT index is stored together with the time series in a PostgreSQL database and

maintained by a custom Python module executed by the database system. The k-NN

queries are evaluated by a PostgreSQL function that is also written in Python. In addition,

numerous helper functions support the analysis and evaluation of the index.

The evaluation supports the claim that TSEIT is able to e�ciently search the k-NN of

time series in arbitrary time intervals. In any case, only a fraction—often 0.1% or much

less—of all time series is accessed, even though an exact search without false dismissals is

guaranteed. TSEIT scales well and is able to index and query millions of time series, being

many times faster than the competing approach TWIST. Since the insertion rate decreases

only linearly by a small factor, TSEIT is able to index more than 100 million time series

e�ortlessly.

7.2 Future Work

Although this work achieves its goals, there is potential for conceptual and implementation-

related extensions and modi�cations. The following gives hints on possible future work.

Deletion of time series The intention of this work was the one-time indexing of static

datasets. While later insertions are covered, the deletion of time series from the index has

not been part of this work. The implementation even prevents the deletion of rows from

the time series table to maintain the integrity of the index. After deleting a time series, the

following invariants might need to be restored:

• An envelope (tightly) wraps the time series it holds.

• A leaf node contains at least lmin time series.

• An inner node has at least cmin child nodes.

The �rst point is not that critical, as the envelope can easily be recalculated. Alternatively,

the envelope could even stay unmodi�ed, as it still would not violate the lower-bound

property of LBG. If a leaf node contains fewer time series than speci�ed by lmin, it needs

to be deleted. The now orphaned time series can either be reinserted from the root node

66

7.2 Future Work

or, if possible, distributed among the sibling nodes. The deletion of a leaf node may cause

its parent node to violate the cmin constraint, provoking a deletion of this node, too. In

this case, each orphaned child node can be reinserted as a whole. Alternatively, all time

series below the deleted inner node can be reinserted individually. As the deletion of a

time series can propagate up in the tree, it is worth to examine e�cient approaches to deal

with the costly reorganization of the index tree.

Time series of di�erent lengths Currently, the time series in the TSEIT index are required

to be of the same length. However, it is conceivable to add support for indexing time

series of di�erent lengths or with gaps. For example, this would allow inserting time series

with di�ering start times. When the time series are de�ned for the entire query interval,

there is conceptually no di�erence to the current solution. However, subsequences that

are incomplete within the query interval need special treatment, e.g., by extrapolating

the distance for the full interval. Moreover, envelopes of di�erent lengths are worth

considering, too.

Maximum segment length Starting with the minimum segment length Tmin at the leaf

level, the segment length doubles with each higher tree level. Once the segments are as

long as the indexed time series, the segment length cannot double anymore and thus each

further upper tree level holds envelopes consisting of only one segment. It might be useful

to de�ne a maximum segment length for a higher envelope resolution in upper levels.

Cascade of lower bounds Examining the time series of a candidate leaf node on k-NN

query evaluation, the LB_Kim lower bound is calculated before possibly computing the

exact but costly DTW distance. While LB_Kim is fast to compute, it is not as close to the

exact distance as other lower-bound functions, which, however, are computational more

intensive. It can be examined whether it is worth to either replace LB_Kim or to build a

cascade of multiple lower-bound functions as in [Rak+12].

Implementing LBG in C Due to its recursive de�nition, it is not possible to e�ciently

implement the LBG function using NumPy. However, as this method is essential for

querying, it might be bene�cial to re-implement it in plain C to overcome the overhead

of interpreted Python code. While there are several ways to wrap C code in Python, the

simplest way is probably the use of NumPy’s C-API. Since the query evaluation was not

pro�led, it is not clear how signi�cant the performance gain could be.

Parallelizing DTW computations On k-NN query processing, both the LB_Kim and espe-

cially the DTW distances are always computed sequentially for all time series of a leaf

node. The parallelization of those computations should considerably accelerate the query

execution. For this, it might be useful to replace the Python module heapq with queue.

The latter module implements the required locking mechanism for safely sharing data,

like the current best-so-far distance, between multiple threads.

67

Bibliography

[Haa10] Alfred Haar. “Zur Theorie der orthogonalen Funktionensysteme”. In: Mathe-
matische Annalen 69.3 (Sept. 1, 1910), pp. 331–371. doi: 10.1007/BF01456326.

[FH51] Evelyn Fix and J. L. Hodges Jr. Discriminatory Analysis - Nonparametric Dis-
crimination: Consistency Properties. Tech. rep. University of California, Berke-

ley, Feb. 1951. url: http://www.dtic.mil/docs/citations/ADA800276.

[CH67] T. Cover and P. Hart. “Nearest Neighbor Pattern Classi�cation”. In: IEEE
Transactions on Information Theory 13.1 (Jan. 1967), pp. 21–27. doi: 10.1109/

TIT.1967.1053964.

[Mac67] J. MacQueen. “Some Methods for Classi�cation and Analysis of Multivariate

Observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, Volume 1: Statistics. The Regents of the Univer-

sity of California, 1967. url: https://projecteuclid.org/euclid.bsmsp/

1200512992.

[BM70] R. Bayer and E. McCreight. “Organization and Maintenance of Large Or-

dered Indices”. In: Proceedings of the 1970 ACM SIGFIDET Workshop on Data
Description, Access and Control. SIGFIDET ’70. ACM, 1970, pp. 107–141. doi:

10.1145/1734663.1734671.

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In:

Communications of the ACM 13.6 (June 1970), pp. 377–387. doi: 10.1145/

362384.362685.

[Bay72] Rudolf Bayer. “Symmetric Binary B-Trees: Data Structure and Maintenance

Algorithms”. In: Acta Informatica 1.4 (Dec. 1, 1972), pp. 290–306. doi: 10.1007/

BF00289509.

[Fly72] Michael J. Flynn. “Some Computer Organizations and Their E�ectiveness”.

In: IEEE Transactions on Computers C-21.9 (Sept. 1972), pp. 948–960. doi: 10.

1109/TC.1972.5009071.

[Ben75] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative

Searching”. In: Communications of the ACM 18.9 (Sept. 1975), pp. 509–517. doi:

10.1145/361002.361007.

[Ita75] F. Itakura. “Minimum Prediction Residual Principle Applied to Speech Recog-

nition”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 23.1

(Feb. 1975), pp. 67–72. doi: 10.1109/TASSP.1975.1162641.

[OS75] Alan V. Oppenheim and Ronald W. Schafer. Digital Signal Processing. Prentice-

Hall, 1975. isbn: 978-0-13-214635-7.

69

http://dx.doi.org/10.1007/BF01456326
http://www.dtic.mil/docs/citations/ADA800276
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1109/TIT.1967.1053964
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
http://dx.doi.org/10.1145/1734663.1734671
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1007/BF00289509
http://dx.doi.org/10.1007/BF00289509
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1109/TASSP.1975.1162641

Bibliography

[McC76] T.J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software En-
gineering SE-2.4 (Dec. 1976), pp. 308–320. doi: 10.1109/TSE.1976.233837.

[SC78] H. Sakoe and S. Chiba. “Dynamic Programming Algorithm Optimization

for Spoken Word Recognition”. In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 26.1 (Feb. 1978), pp. 43–49. doi: 10.1109/TASSP.1978.

1163055.

[Com79] Douglas Comer. “Ubiquitous B-Tree”. In: ACM Computing Surveys 11.2 (June

1979), pp. 121–137. doi: 10.1145/356770.356776.

[LY81] Philip L. Lehman and s. Bing Yao. “E�cient Locking for Concurrent Opera-

tions on B-Trees”. In: ACM Transactions on Database Systems 6.4 (Dec. 1981),

pp. 650–670. doi: 10.1145/319628.319663.

[Llo82] S. Lloyd. “Least Squares Quantization in PCM”. In: IEEE Transactions on Infor-
mation Theory 28.2 (Mar. 1982), pp. 129–137. doi: 10.1109/TIT.1982.1056489.

[Gut84] Antonin Guttman. “R-Trees: A Dynamic Index Structure for Spatial Search-

ing”. In: Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’84. ACM, 1984, pp. 47–57. doi: 10.1145/

602259.602266.

[Bec+90] Norbert Beckmann et al. “The R*-Tree: An E�cient and Robust Access Method

for Points and Rectangles”. In: Proceedings of the 1990 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD ’90. ACM, 1990, pp. 322–

331. doi: 10.1145/93597.98741.

[Dun90] R. Duncan. “A Survey of Parallel Computer Architectures”. In: Computer 23.2

(Feb. 1990), pp. 5–16. doi: 10.1109/2.44900.

[Spr91] Robert F. Sproull. “Re�nements to Nearest-Neighbor Searching in k-

Dimensional Trees”. In: Algorithmica 6.1 (June 1, 1991), pp. 579–589. doi:

10.1007/BF01759061.

[AFS93] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. “E�cient Similarity

Search in Sequence Databases”. In: Foundations of Data Organization and Al-
gorithms. International Conference on Foundations of Data Organization and

Algorithms. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

Oct. 13, 1993, pp. 69–84. doi: 10.1007/3-540-57301-1_5.

[BC94] Donald J. Berndt and James Cli�ord. “Using Dynamic Time Warping to Find

Patterns in Time Series”. In: Proceedings of the 3rd International Conference
on Knowledge Discovery and Data Mining. AAAIWS’94. AAAI Press, 1994,

pp. 359–370. isbn: 0-929280-73-3.

[FRM94] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. “Fast Sub-

sequence Matching in Time-Series Databases”. In: Proceedings of the 1994
ACM SIGMOD International Conference on Management of Data. SIGMOD ’94.

ACM, 1994, pp. 419–429. doi: 10.1145/191839.191925.

[Gra95] A. Graps. “An Introduction to Wavelets”. In: IEEE Computational Science and
Engineering 2.2 (1995), pp. 50–61. doi: 10.1109/99.388960.

70

http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1145/356770.356776
http://dx.doi.org/10.1145/319628.319663
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1145/93597.98741
http://dx.doi.org/10.1109/2.44900
http://dx.doi.org/10.1007/BF01759061
http://dx.doi.org/10.1007/3-540-57301-1_5
http://dx.doi.org/10.1145/191839.191925
http://dx.doi.org/10.1109/99.388960

Bibliography

[HNP95] Joseph M. Hellerstein, Je�rey F. Naughton, and Avi Pfe�er. “Generalized

Search Trees for Database Systems”. In: Proceedings of the 21th International
Conference on Very Large Data Bases. VLDB ’95. Morgan Kaufmann Publishers

Inc., 1995, pp. 562–573. isbn: 978-1-55860-379-0.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. “Nearest Neighbor

Queries”. In: Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’95. ACM, 1995, pp. 71–79. doi: 10.1145/

223784.223794.

[Fal96] Christos Faloutsos. Searching Multimedia Databases by Content. Kluwer Aca-

demic Publishers, 1996. isbn: 0-7923-9777-0.

[SZ96] H. Shatkay and S.B. Zdonik. “Approximate Queries and Representations for

Large Data Sequences”. In: Proceedings of the Twelfth International Conference
on Data Engineering. IEEE Comput. Soc. Press, 1996, pp. 536–545. doi: 10.

1109/ICDE.1996.492204.

[For+97] John T. Foreman et al. C4 Software Technology Reference Guide - A Prototype.
Handbook CMU/SEI-97-HB-001. Carnegie Mellon University, Software En-

gineering Institute, Jan. 1997, p. 438. url: http://www.dtic.mil/docs/

citations/ADA320732.

[Keo97] E. Keogh. “Fast Similarity Search in the Presence of Longitudinal Scaling in

Time Series Databases”. In: Proceedings Ninth IEEE International Conference
on Tools with Arti�cial Intelligence. IEEE Comput. Soc, 1997, pp. 578–584. doi:

10.1109/TAI.1997.632306.

[KJF97] Flip Korn, H. V. Jagadish, and Christos Faloutsos. “E�ciently Supporting Ad

Hoc Queries in Large Datasets of Time Sequences”. In: Proceedings of the 1997
ACM SIGMOD International Conference on Management of Data. SIGMOD ’97.

ACM, 1997, pp. 289–300. doi: 10.1145/253260.253332.

[WSB98] Roger Weber, Hans-Jörg Schek, and Stephen Blott. “A Quantitative Analysis

and Performance Study for Similarity-Search Methods in High-Dimensional

Spaces”. In: Proceedings of the 24rd International Conference on Very Large
Data Bases. VLDB ’98. Morgan Kaufmann Publishers Inc., 1998, pp. 194–205.

isbn: 978-1-55860-566-4.

[YJF98] Byoung-Kee Yi, H V Jagadish, and C Faloutsos. “E�cient Retrieval of Simi-

lar Time Sequences under Time Warping”. In: Proceedings 14th International
Conference on Data Engineering. Feb. 1998, pp. 201–208. doi: 10.1109/ICDE.

1998.655778.

[HS99] Gísli R. Hjaltason and Hanan Samet. “Distance Browsing in Spatial Databases”.

In: ACM Transactions on Database Systems 24.2 (June 1999), pp. 265–318. doi:

10.1145/320248.320255.

[KP99] E.J. Keogh and M.J. Pazzani. “An Indexing Scheme for Fast Similarity Search

in Large Time Series Databases”. In: Proceedings. Eleventh International Con-
ference on Scienti�c and Statistical Database Management. IEEE Comput. Soc,

1999, pp. 56–67. doi: 10.1109/SSDM.1999.787621.

71

http://dx.doi.org/10.1145/223784.223794
http://dx.doi.org/10.1145/223784.223794
http://dx.doi.org/10.1109/ICDE.1996.492204
http://dx.doi.org/10.1109/ICDE.1996.492204
http://www.dtic.mil/docs/citations/ADA320732
http://www.dtic.mil/docs/citations/ADA320732
http://dx.doi.org/10.1109/TAI.1997.632306
http://dx.doi.org/10.1145/253260.253332
http://dx.doi.org/10.1109/ICDE.1998.655778
http://dx.doi.org/10.1109/ICDE.1998.655778
http://dx.doi.org/10.1145/320248.320255
http://dx.doi.org/10.1109/SSDM.1999.787621

Bibliography

[KA99] Kin-Pong Chan and Ada Wai-Chee Fu. “E�cient Time Series Matching by

Wavelets”. In: Proceedings 15th International Conference on Data Engineering.

IEEE, Mar. 1999, pp. 126–133. doi: 10.1109/ICDE.1999.754915.

[XE00] Mei Xu and C. I. Ezeife. “Maintaining Horizontally Partitioned Warehouse

Views”. In: Data Warehousing and Knowledge Discovery. International Con-

ference on Data Warehousing and Knowledge Discovery. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, Sept. 4, 2000, pp. 126–133. doi:

10.1007/3-540-44466-1_13.

[YF00] Byoung-Kee Yi and Christos Faloutsos. “Fast Time Sequence Indexing for

Arbitrary Lp Norms”. In: Proceedings of the 26th International Conference on
Very Large Data Bases. VLDB ’00. Morgan Kaufmann Publishers Inc., Sept. 1,

2000, pp. 385–394. isbn: 978-1-55860-715-6.

[KS01] T. Kahveci and A. Singh. “Variable Length Queries for Time Series Data”. In:

Proceedings 17th International Conference on Data Engineering. IEEE Comput.

Soc, 2001, pp. 273–282. doi: 10.1109/ICDE.2001.914838.

[Keo+01] Eamonn Keogh et al. “Dimensionality Reduction for Fast Similarity Search

in Large Time Series Databases”. In: Knowledge and Information Systems 3.3

(Aug. 1, 2001), pp. 263–286. doi: 10.1007/PL00011669.

[KPC01] Sang-Wook Kim, Sanghyun Park, and Wesley W. Chu. “An Index-Based Ap-

proach for Similarity Search Supporting Time Warping in Large Sequence

Databases”. In: Proceedings 17th International Conference on Data Engineering.

2001, pp. 607–614. doi: 10.1109/ICDE.2001.914875.

[Cha+02] Kaushik Chakrabarti et al. “Locally Adaptive Dimensionality Reduction for

Indexing Large Time Series Databases”. In: ACM Transactions on Database
Systems 27.2 (June 2002), pp. 188–228. doi: 10.1145/568518.568520.

[AiJ+02] Ai-Jun Li et al. “An Approach for Fast Subsequence Matching through KMP

Algorithm in Time Series Databases”. In: Proceedings. International Conference
on Machine Learning and Cybernetics. Vol. 3. IEEE, 2002, pp. 1292–1295. doi:

10.1109/ICMLC.2002.1167412.

[RK04] Chotirat Ann Ratanamahatana and Eamonn Keogh. “Making Time-Series

Classi�cation More Accurate Using Learned Constraints”. In: Proceedings of
the 2004 SIAM International Conference on Data Mining. Ed. by Michael W.

Berry et al. Society for Industrial and Applied Mathematics, Apr. 22, 2004,

pp. 11–22. doi: 10.1137/1.9781611972740.2.

[KR05] Eamonn Keogh and Chotirat Ann Ratanamahatana. “Exact Indexing of Dy-

namic Time Warping”. In: Knowledge and Information Systems 7.3 (2005),

pp. 358–386. doi: 10.1007/s10115-004-0154-9.

[SYF05] Yasushi Sakurai, Masatoshi Yoshikawa, and Christos Faloutsos. “FTW: Fast

Similarity Search Under the Time Warping Distance”. In: Proceedings of the
Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. PODS ’05. ACM, 2005, pp. 326–337. doi: 10.1145/1065167.

1065210.

72

http://dx.doi.org/10.1109/ICDE.1999.754915
http://dx.doi.org/10.1007/3-540-44466-1_13
http://dx.doi.org/10.1109/ICDE.2001.914838
http://dx.doi.org/10.1007/PL00011669
http://dx.doi.org/10.1109/ICDE.2001.914875
http://dx.doi.org/10.1145/568518.568520
http://dx.doi.org/10.1109/ICMLC.2002.1167412
http://dx.doi.org/10.1137/1.9781611972740.2
http://dx.doi.org/10.1007/s10115-004-0154-9
http://dx.doi.org/10.1145/1065167.1065210
http://dx.doi.org/10.1145/1065167.1065210

Bibliography

[Man+06] Yannis Manolopoulos et al. R-Trees: Theory and Applications. Red. by Lakhmi

Jain and Xindong Wu. Advanced Information and Knowledge Processing.

Springer London, 2006. doi: 10.1007/978-1-84628-293-5.

[Aßf+07] Johannes Aßfalg et al. “Interval-Focused Similarity Search in Time Series

Databases”. In: Advances in Databases: Concepts, Systems and Applications.
International Conference on Database Systems for Advanced Applications.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, Apr. 9, 2007,

pp. 586–597. doi: 10.1007/978-3-540-71703-4_50.

[LPK07] Seung-Hwan Lim, Heejin Park, and Sang-Wook Kim. “Using Multiple Indexes

for E�cient Subsequence Matching in Time-Series Databases”. In: Information
Sciences 177.24 (Dec. 15, 2007), pp. 5691–5706. doi: 10.1016/j.ins.2007.07.

004.

[Lin+07] Jessica Lin et al. “Experiencing SAX: A Novel Symbolic Representation of

Time Series”. In: Data Mining and Knowledge Discovery 15.2 (2007), pp. 107–

144. doi: 10.1007/s10618-007-0064-z.

[SC07] Stan Salvador and Philip Chan. “Toward Accurate Dynamic Time Warping

in Linear Time and Space”. In: Intelligent Data Analysis 11.5 (Jan. 1, 2007),

pp. 561–580. issn: 1088-467X.

[Du+08] Yi Du et al. “E�ective Subsequence Matching in Compressed Time Series”. In:

2008 Third International Conference on Pervasive Computing and Applications.
IEEE, Oct. 2008, pp. 922–926. doi: 10.1109/ICPCA.2008.4783742.

[SK08] Jin Shieh and Eamonn Keogh. “iSAX: Indexing and Mining Terabyte Sized

Time Series”. In: Proceedings of the 14th ACMSIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’08. ACM, 2008, pp. 623–631.

doi: 10.1145/1401890.1401966.

[Cam+10] Alessandro Camerra et al. “iSAX 2.0: Indexing and Mining One Billion Time

Series”. In: 2010 IEEE International Conference on DataMining. IEEE, Dec. 2010,

pp. 58–67. doi: 10.1109/ICDM.2010.124.

[KS10] Maciej Krawczak and Grazyna Szkatula. “Time Series Envelopes for Classi-

�cation”. In: 2010 5th IEEE International Conference Intelligent Systems. IEEE,

July 2010, pp. 156–161. doi: 10.1109/IS.2010.5548371.

[NRR10] Vit Niennattrakul, Pongsakorn Ruengronghirunya, and Chotirat Ann Ratan-

amahatana. “Exact Indexing for Massive Time Series Databases under Time

Warping Distance”. In: Data Mining and Knowledge Discovery 21.3 (Nov. 2010),

pp. 509–541. doi: 10.1007/s10618-010-0165-y.

[Cas+12] Carmelo Cassisi et al. “Similarity Measures and Dimensionality Reduction

Techniques for Time Series Data Mining”. In: Advances in Data Mining Knowl-
edge Discovery and Applications. Ed. by Adem Karahoca. InTech, 2012. doi:

10.5772/49941.

73

http://dx.doi.org/10.1007/978-1-84628-293-5
http://dx.doi.org/10.1007/978-3-540-71703-4_50
http://dx.doi.org/10.1016/j.ins.2007.07.004
http://dx.doi.org/10.1016/j.ins.2007.07.004
http://dx.doi.org/10.1007/s10618-007-0064-z
http://dx.doi.org/10.1109/ICPCA.2008.4783742
http://dx.doi.org/10.1145/1401890.1401966
http://dx.doi.org/10.1109/ICDM.2010.124
http://dx.doi.org/10.1109/IS.2010.5548371
http://dx.doi.org/10.1007/s10618-010-0165-y
http://dx.doi.org/10.5772/49941

Bibliography

[Rak+12] Thanawin Rakthanmanon et al. “Searching and Mining Trillions of Time

Series Subsequences Under Dynamic Time Warping”. In: Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’12. ACM, 2012, pp. 262–270. doi: 10.1145/2339530.2339576.

[SH12] Patrick Schäfer and Mikael Högqvist. “SFA: A Symbolic Fourier Approximation

and Index for Similarity Search in High Dimensional Datasets”. In: Proceedings
of the 15th International Conference on Extending Database Technology. EDBT

’12. ACM, 2012, pp. 516–527. doi: 10.1145/2247596.2247656.

[Wan+13] Yang Wang et al. “A Data-Adaptive and Dynamic Segmentation Index for

Whole Matching on Time Series”. In: Proceedings of the VLDB Endowment 6.10

(Aug. 2013), pp. 793–804. doi: 10.14778/2536206.2536208.

[XC13] Xiao-Ying Liu and Chuan-Lun Ren. “Fast Subsequence Matching under Time

Warping in Time-Series Databases”. In: 2013 International Conference on Ma-
chine Learning and Cybernetics. IEEE, July 2013, pp. 1584–1590. doi: 10.1109/

ICMLC.2013.6890855.

[Cam+14] Alessandro Camerra et al. “Beyond One Billion Time Series: Indexing and

Mining Very Large Time Series Collections with iSAX2+”. In: Knowledge and
Information Systems 39.1 (Apr. 1, 2014), pp. 123–151. doi: 10.1007/s10115-

012-0606-6.

[LY14] Hailin Li and Libin Yang. “Extensions and Relationships of Some Existing

Lower-Bound Functions for Dynamic Time Warping”. In: Journal of Intelligent
Information Systems 43.1 (2014), pp. 59–79. doi: 10.1007/s10844-014-0306-7.

[NB14] Happy Nath and Ujwala Baruah. “Evaluation of Lower Bounding Methods

of Dynamic Time Warping (DTW)”. In: International Journal of Computer
Applications 94.20 (May 30, 2014), pp. 12–17. doi: 10.5120/16550-6168.

[SA14] Joan Serrà and Josep Ll. Arcos. “An Empirical Evaluation of Similarity Mea-

sures for Time Series Classi�cation”. In: Knowledge-Based Systems 67 (Supple-

ment C Sept. 1, 2014), pp. 305–314. doi: 10.1016/j.knosys.2014.04.035.

[ZIP14] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. “Indexing for

Interactive Exploration of Big Data Series”. In: Proceedings of the 2014 ACM
SIGMOD International Conference onManagement of Data. SIGMOD ’14. ACM,

2014, pp. 1555–1566. doi: 10.1145/2588555.2610498.

[Gil+15] Myeong-Seon Gil et al. “Fast Index Construction for Distortion-Free Subse-

quence Matching in Time-Series Databases”. In: 2015 International Confer-
ence on Big Data and Smart Computing. IEEE, Feb. 2015, pp. 130–135. doi:

10.1109/35021BIGCOMP.2015.7072822.

[PG15] John Paparrizos and Luis Gravano. “K-Shape: E�cient and Accurate Clus-

tering of Time Series”. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’15. ACM, 2015, pp. 1855–1870.

doi: 10.1145/2723372.2737793.

74

http://dx.doi.org/10.1145/2339530.2339576
http://dx.doi.org/10.1145/2247596.2247656
http://dx.doi.org/10.14778/2536206.2536208
http://dx.doi.org/10.1109/ICMLC.2013.6890855
http://dx.doi.org/10.1109/ICMLC.2013.6890855
http://dx.doi.org/10.1007/s10115-012-0606-6
http://dx.doi.org/10.1007/s10115-012-0606-6
http://dx.doi.org/10.1007/s10844-014-0306-7
http://dx.doi.org/10.5120/16550-6168
http://dx.doi.org/10.1016/j.knosys.2014.04.035
http://dx.doi.org/10.1145/2588555.2610498
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072822
http://dx.doi.org/10.1145/2723372.2737793

Bibliography

[Sch15] Patrick Schäfer. “Scalable Time Series Similarity Search for Data Analytics”.

PhD thesis. Humboldt-Universität zu Berlin, 2015. doi: 10.18452/17338.

[YC15] Sho Yoshida and Basabi Chakraborty. “A Comparative Study of Similarity

Measures for Time Series Classi�cation”. In: New Frontiers in Arti�cial In-
telligence. JSAI International Symposium on Arti�cial Intelligence. Lecture

Notes in Computer Science. Springer International Publishing, Nov. 16, 2015,

pp. 397–408. doi: 10.1007/978-3-319-50953-2_27.

[ZIP16] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. “ADS: The Adap-

tive Data Series Index”. In: The VLDB Journal 25.6 (Dec. 1, 2016), pp. 843–866.

doi: 10.1007/s00778-016-0442-5.

75

http://dx.doi.org/10.18452/17338
http://dx.doi.org/10.1007/978-3-319-50953-2_27
http://dx.doi.org/10.1007/s00778-016-0442-5

A Appendix

A.1 Configuration of TSEIT

Below, the default con�guration �le for TSEIT is given. The user can override all parameters

in a separate user con�guration �le.

; DATABASE --

[super_database]

; <String> (default: postgres)

name = postgres

; <String> (default: postgres)

user = postgres

; <String> (default: localhost)

host = localhost

[database]

; <String> (default: tseit)

name = tseit

; <String> (default: postgres)

user = postgres

; <String> (default: localhost)

host = localhost

; INDEX ---

[index]

; <Integer> (default: 200)

sequence_length = 200

; TREE --

; <Integer> (default: 2)

min_number_of_children = 2

; <Integer> (default: 3)

max_number_of_children = 3

77

A Appendix

; <Integer> (default: 1)

min_leaf_size = 1

; <Integer> (default: 1000)

max_leaf_size = 1000

; SEGMENTATION --

; true (default) | false

use_segmentation = true

; <Integer> (default: 1)

min_segment_length = 1

; SPLITTING ---

; kenvelopes (default) | overlap_split | kmeans

split_algo_leaf_node = kenvelopes

; kenvelopes (default) | overlap_split

split_algo_inner_node = kenvelopes

; overlap_than_area | overlap_than_insertion_cost

; | area (default) | insertion_cost

kenvelopes_cost_fct = area

; true | false (default)

kenvelopes_sort_alternating = false

; MISCELLANEOUS ---

; overlap_than_area (default) | overlap_than_insertion_cost

; | area | insertion_cost

choose_subtree_cost_fct = overlap_than_area

; true (default) | false

use_reinsertion = true

; TWIST ---

; true | false (default)

twist = false

; none | <Integer> (default: 7592)

twist_rand_seed = 7592

; <Integer> (default: 1000)

twist_max_node_size = 1000

78

A.2 Con�guration of PostgreSQL

; PROFILING ---

; false (default) | cprofile

profile = false

; <String> (default: profile.stats)

profile_path = profile.stats

A.2 Configuration of PostgreSQL

The listing below shows the modi�cations on the default PostgreSQL con�guration �le.

See https://www.postgresql.org/docs/9.6/static/runtime-config.html for a detailed

description of the parameters.

#---

CONNECTIONS AND AUTHENTICATION

#---

- Connection Settings -

max_connections = 16 # default: 100

#---

RESOURCE USAGE (except WAL)

#---

- Memory -

shared_buffers = 15GB # default: 128MB

work_mem = 2GB # default: 4MB

maintenance_work_mem = 64GB # default: 64MB

- Asynchronous Behavior -

effective_io_concurrency = 10 # default: 1

max_worker_processes = 16 # default: 8

max_parallel_workers_per_gather = 16 # default: 2

#---

WRITE AHEAD LOG

#---

- Settings -

fsync = off # default: on

synchronous_commit = off # default: on

full_page_writes = off # default: on

79

https://www.postgresql.org/docs/9.6/static/runtime-config.html

A Appendix

- Checkpoints -

max_wal_size = 8GB # default: 1GB

min_wal_size = 4GB # default: 80MB

checkpoint_completion_target = 0.9 # default: 0.5

#---

QUERY TUNING

#---

- Planner Cost Constants -

parallel_setup_cost = 500.0 # default: 1000.0

effective_cache_size = 64GB # default: 4GB

#---

ERROR REPORTING AND LOGGING

#---

- Where to Log -

log_destination = 'csvlog' # default: stderr

logging_collector = on # default: off

log_directory = '/var/log/postgresql' # default: 'pg_log'

log_file_mode = 0644 # default: 0600

- When to Log -

client_min_messages = debug # default: notice

log_min_error_statement = fatal # default: error

- What to Log -

log_error_verbosity = terse # default: default

#---

AUTOVACUUM PARAMETERS

#---

log_autovacuum_min_duration = 0 # default: -1

autovacuum_vacuum_cost_limit = 1000 # default: -1

A.3 Exemplary k-NN Queries

In the following, the raw output of exemplary k-NN queries on the 7-million and the

103-million dataset is given. Leading NOTICE: strings, the content of the stats column

(holding statistics as JSON-formatted string for client-side processing) and a few empty

lines have been removed from the listings for space reasons.

80

A.3 Exemplary k-NN Queries

The queries were executed after having loaded the database tables into PostgreSQL’s bu�er

cache with the custom function prewarm(). The execution time was measured using the

timing option of PostgreSQL’s command-line client psql.

A.3.1 Queries on the 7-Million Dataset
SELECT * FROM knn('and', start_index => -1, end_index => -1,
k => 4, radius => -1, verbose => True);
get time series...
[knn bsf: inf] level 10 - node 5318 LBG dist: 0.10528418421862709
[knn bsf: inf] level 10 - node 12631 LBG dist: 0.0
[knn bsf: inf] level 9 - node 5319 LBG dist: 0.0
[knn bsf: inf] level 9 - node 8744 LBG dist: 0.1052840820344287
[knn bsf: inf] level 8 - node 1777 LBG dist: 0.10528379661854458
[knn bsf: inf] level 8 - node 5317 LBG dist: 0.0
[knn bsf: inf] level 8 - node 12597 LBG dist: 0.10528373423066201
[knn bsf: inf] level 7 - node 1743 LBG dist: 0.11486075082392017
[knn bsf: inf] level 7 - node 5316 LBG dist: 0.0
[knn bsf: inf] level 7 - node 11617 LBG dist: 0.11486044749520077
[knn bsf: inf] level 6 - node 1742 LBG dist: 0.12207004377429354
[knn bsf: inf] level 6 - node 3388 LBG dist: 0.12207867085282809
[knn bsf: inf] level 6 - node 11219 LBG dist: 0.0
[knn bsf: inf] level 5 - node 587 LBG dist: 0.12505069448716366
[knn bsf: inf] level 5 - node 6588 LBG dist: 0.12500526367371476
[knn bsf: inf] level 5 - node 13497 LBG dist: 0.0
[knn bsf: inf] level 4 - node 7220 LBG dist: 0.0
[knn bsf: inf] level 4 - node 13496 LBG dist: 0.12700928642094733
[knn bsf: inf] level 3 - node 147 LBG dist: 0.12790301702559537
[knn bsf: inf] level 3 - node 7219 LBG dist: 0.12847742738133625
[knn bsf: inf] level 3 - node 8420 LBG dist: 0.0
[knn bsf: inf] level 2 - node 134 LBG dist: 0.1276305340647704
[knn bsf: inf] level 2 - node 6622 LBG dist: 0.0
[knn bsf: inf] level 2 - node 14926 LBG dist: 0.12407300009380696
[knn bsf: inf] level 1 - node 6482 LBG dist: 0.0
[knn bsf: inf] level 1 - node 6621 LBG dist: 0.09944154604173609
[knn bsf: inf] level 0 - node 6448 LBG dist: 0.0
[knn bsf: inf] level 0 - node 6481 LBG dist: 0.051786927665999495
[knn bsf: 2.25377e-02] level 0 - node 6448 min. DTW: 0.001016920096783093

LBG calculations: 28
examined inner nodes: 11
examined leaf nodes: 1
LB_Kim calculations: 5
DTW calculations: 5

k | ts_id | name | distance | start_index | end_index | stats
---+---------+------+---------------------+-------------+-----------+-------
1 | 6076076 | to | 0.00101692009678309 | 0 | 208 | ...
2 | 2896104 | in | 0.0155376628564426 | 0 | 208 | ...
3 | 459271 | a | 0.0220354034133428 | 0 | 208 | ...
4 | 4412877 | of | 0.0225376950785585 | 0 | 208 | ...

Time: 367.575 ms

Listing A.1 Nearest neighbors of and for the years 1800 − 2008.

81

A Appendix

SELECT * FROM knn('Germany', start_index => 130, end_index => 150,
k => 2, radius => -1, verbose => True);
get time series...
[knn bsf: inf] level 10 - node 5318 LBG dist: 2.452010665370238e-07
[knn bsf: inf] level 10 - node 12631 LBG dist: 0.0
[knn bsf: inf] level 9 - node 5319 LBG dist: 0.0
[knn bsf: inf] level 9 - node 8744 LBG dist: 2.451516379639861e-07
[knn bsf: inf] level 8 - node 1777 LBG dist: 2.4501360276886693e-07
[knn bsf: inf] level 8 - node 5317 LBG dist: 0.0
[knn bsf: inf] level 8 - node 12597 LBG dist: 2.4498343537627007e-07
[knn bsf: inf] level 7 - node 1743 LBG dist: 2.44831742689711e-07
[knn bsf: inf] level 7 - node 5316 LBG dist: 0.0
[knn bsf: inf] level 7 - node 11617 LBG dist: 2.446023303215416e-07
[knn bsf: inf] level 6 - node 1742 LBG dist: 2.402493560015593e-07
[knn bsf: inf] level 6 - node 3388 LBG dist: 2.44474989604464e-07
[knn bsf: inf] level 6 - node 11219 LBG dist: 0.0
[knn bsf: inf] level 5 - node 587 LBG dist: 2.442392613272447e-07
[knn bsf: inf] level 5 - node 6588 LBG dist: 1.9259370377786145e-07
[knn bsf: inf] level 5 - node 13497 LBG dist: 0.0
[knn bsf: inf] level 4 - node 7220 LBG dist: 0.0
[knn bsf: inf] level 4 - node 13496 LBG dist: 2.1726206695260976e-07
[knn bsf: inf] level 3 - node 147 LBG dist: 5.5831918343947615e-08
[knn bsf: inf] level 3 - node 7219 LBG dist: 1.7181443237849322e-07
[knn bsf: inf] level 3 - node 8420 LBG dist: 0.0
[knn bsf: inf] level 2 - node 134 LBG dist: 0.0
[knn bsf: inf] level 2 - node 6622 LBG dist: 1.6939984863798723e-07
[knn bsf: inf] level 2 - node 14926 LBG dist: 0.0
[knn bsf: inf] level 1 - node 129 LBG dist: 0.0
[knn bsf: inf] level 1 - node 133 LBG dist: 1.1953057372942287e-07
[knn bsf: inf] level 0 - node 9291 LBG dist: 0.0
[knn bsf: inf] level 0 - node 14924 LBG dist: 0.0
[knn bsf: 1.04658e-08] level 0 - node 9291 min. DTW: 8.793723645729129e-09
[knn bsf: 5.56403e-09] level 0 - node 14924 min. DTW: 4.720827730487925e-09
[knn bsf: 5.56403e-09] level 1 - node 7720 LBG dist: 0.0
[knn bsf: 5.56403e-09] level 1 - node 14925 LBG dist: 0.0
[knn bsf: 5.56403e-09] level 0 - node 127 LBG dist: 9.584258272321103e-07
[knn bsf: 5.56403e-09] level 0 - node 6966 LBG dist: 0.0
[knn bsf: 3.43002e-09] level 0 - node 6966 min. DTW: 3.044039632242908e-09
[knn bsf: 3.43002e-09] level 0 - node 128 LBG dist: 0.0
[knn bsf: 3.43002e-09] level 0 - node 7719 LBG dist: 0.0
[knn bsf: 3.04404e-09] level 0 - node 128 min. DTW: 1.5346986393409813e-09
[knn bsf: 3.04404e-09] level 0 - node 7719 min. DTW: 4.5235610212726406e-09

LBG calculations: 34
examined inner nodes: 14
examined leaf nodes: 5
LB_Kim calculations: 2358
DTW calculations: 504

k | ts_id | name | distance | start_index | end_index | stats
---+---------+-------+----------------------+-------------+-----------+-------
1 | 4756547 | peace | 1.53469863934098e-09 | 130 | 150 | ...
2 | 583527 | blood | 3.04403963224291e-09 | 130 | 150 | ...

Time: 191.804 ms

Listing A.2 Nearest neighbors of Germany for the years 1930 − 1950.

82

A.3 Exemplary k-NN Queries

SELECT * FROM knn('Germany', start_index => 155, end_index => -1,
k => 3, radius => -1, verbose => True);
get time series...
[knn bsf: inf] level 10 - node 5318 LBG dist: 2.1535228272938325e-07
[knn bsf: inf] level 10 - node 12631 LBG dist: 0.0
[knn bsf: inf] level 9 - node 5319 LBG dist: 0.0
[knn bsf: inf] level 9 - node 8744 LBG dist: 2.152780041990043e-07
[knn bsf: inf] level 8 - node 1777 LBG dist: 2.1507060073667799e-07
[knn bsf: inf] level 8 - node 5317 LBG dist: 0.0
[knn bsf: inf] level 8 - node 12597 LBG dist: 2.1502527854316913e-07
[knn bsf: inf] level 7 - node 1743 LBG dist: 2.1479741207794437e-07
[knn bsf: inf] level 7 - node 5316 LBG dist: 0.0
[knn bsf: inf] level 7 - node 11617 LBG dist: 2.1445289381883806e-07
[knn bsf: inf] level 6 - node 1742 LBG dist: 2.509842683932561e-07
[knn bsf: inf] level 6 - node 3388 LBG dist: 2.5740939092144853e-07
[knn bsf: inf] level 6 - node 11219 LBG dist: 0.0
[knn bsf: inf] level 5 - node 587 LBG dist: 2.0284476321066255e-07
[knn bsf: inf] level 5 - node 6588 LBG dist: 1.7008854777886197e-07
[knn bsf: inf] level 5 - node 13497 LBG dist: 0.0
[knn bsf: inf] level 4 - node 7220 LBG dist: 0.0
[knn bsf: inf] level 4 - node 13496 LBG dist: 1.035989691849883e-07
[knn bsf: inf] level 3 - node 147 LBG dist: 1.914804104559071e-08
[knn bsf: inf] level 3 - node 7219 LBG dist: 1.6010274127281743e-07
[knn bsf: inf] level 3 - node 8420 LBG dist: 0.0
[knn bsf: inf] level 2 - node 134 LBG dist: 0.0
[knn bsf: inf] level 2 - node 6622 LBG dist: 5.06737662439716e-07
[knn bsf: inf] level 2 - node 14926 LBG dist: 0.0
[knn bsf: inf] level 1 - node 129 LBG dist: 0.0
[knn bsf: inf] level 1 - node 133 LBG dist: 8.348610342357409e-10
[knn bsf: inf] level 0 - node 9291 LBG dist: 0.0
[knn bsf: inf] level 0 - node 14924 LBG dist: 0.0
[knn bsf: 6.57233e-10] level 0 - node 9291 min. DTW: 4.740883488792752e-10
[knn bsf: 4.79416e-10] level 0 - node 14924 min. DTW: 4.681301632545856e-10
[knn bsf: 4.79416e-10] level 1 - node 7720 LBG dist: 7.530247245002756e-10
[knn bsf: 4.79416e-10] level 1 - node 14925 LBG dist: 0.0
[knn bsf: 4.79416e-10] level 0 - node 128 LBG dist: 0.0
[knn bsf: 4.79416e-10] level 0 - node 7719 LBG dist: 0.0
[knn bsf: 4.79416e-10] level 0 - node 128 min. DTW: 6.012067502745996e-10
[knn bsf: 4.79416e-10] level 0 - node 7719 min. DTW: 7.180280417408994e-10

LBG calculations: 32
examined inner nodes: 13
examined leaf nodes: 4
LB_Kim calculations: 2142
DTW calculations: 244

k | ts_id | name | distance | start_index | end_index | stats
---+---------+---------+----------------------+-------------+-----------+-------
1 | 4831023 | Paris | 4.68130163254586e-10 | 155 | 208 | ...
2 | 1430013 | demand | 4.74088348879275e-10 | 155 | 208 | ...
3 | 2269496 | freedom | 4.79415545679705e-10 | 155 | 208 | ...

Time: 474.690 ms

Listing A.3 Nearest neighbors of Germany for the years 1955 − 2008. Note that the resulting

neighbors di�er from the ones in Listing A.2 where another interval is queried.

83

A Appendix

SELECT * FROM knn('Microsoft', start_index => 190, end_index => -1,
k => 5, radius => -1, verbose => True);
get time series...
[knn bsf: inf] level 10 - node 5318 LBG dist: 2.0242240655347458e-10
[knn bsf: inf] level 10 - node 12631 LBG dist: 0.0
[knn bsf: inf] level 9 - node 5319 LBG dist: 0.0
[knn bsf: inf] level 9 - node 8744 LBG dist: 2.010737231312652e-10
[knn bsf: inf] level 8 - node 1777 LBG dist: 1.9733052407232198e-10
[knn bsf: inf] level 8 - node 5317 LBG dist: 0.0
[knn bsf: inf] level 8 - node 12597 LBG dist: 1.9651699696673137e-10
[knn bsf: inf] level 7 - node 1743 LBG dist: 1.9245100340249056e-10
[knn bsf: inf] level 7 - node 5316 LBG dist: 0.0
[knn bsf: inf] level 7 - node 11617 LBG dist: 1.8638020480582976e-10
[knn bsf: inf] level 6 - node 1742 LBG dist: 6.785666430238277e-10
[knn bsf: inf] level 6 - node 3388 LBG dist: 8.462378866770938e-10
[knn bsf: inf] level 6 - node 11219 LBG dist: 0.0
[knn bsf: inf] level 5 - node 587 LBG dist: 6.559819011635096e-10
[knn bsf: inf] level 5 - node 6588 LBG dist: 3.2580359813949974e-11
[knn bsf: inf] level 5 - node 13497 LBG dist: 0.0
[knn bsf: inf] level 4 - node 7220 LBG dist: 0.0
[knn bsf: inf] level 4 - node 13496 LBG dist: 1.452001381955064e-11
[knn bsf: inf] level 3 - node 147 LBG dist: 0.0
[knn bsf: inf] level 3 - node 7219 LBG dist: 0.0
[knn bsf: inf] level 3 - node 8420 LBG dist: 0.0
[knn bsf: inf] level 2 - node 146 LBG dist: 0.0
[knn bsf: inf] level 2 - node 8419 LBG dist: 0.0
[knn bsf: inf] level 2 - node 13304 LBG dist: 0.0
[knn bsf: inf] level 1 - node 145 LBG dist: 4.16814561026661e-10
[knn bsf: inf] level 1 - node 9323 LBG dist: 0.0
[knn bsf: inf] level 2 - node 3622 LBG dist: 7.165357774200008e-11
[knn bsf: inf] level 2 - node 7218 LBG dist: 4.3254330487266917e-10
[knn bsf: inf] level 2 - node 10227 LBG dist: 5.1099610597444514e-11
[knn bsf: inf] level 1 - node 140 LBG dist: 0.0
[knn bsf: inf] level 1 - node 8418 LBG dist: 0.0
[knn bsf: inf] level 0 - node 138 LBG dist: 0.0
[knn bsf: inf] level 0 - node 4252 LBG dist: 0.0
[knn bsf: 8.20201e-10] level 0 - node 138 min. DTW: 4.070376999478622e-10
[knn bsf: 5.41523e-10] level 0 - node 4252 min. DTW: 5.017445068844095e-10
[knn bsf: 5.41523e-10] level 0 - node 6335 LBG dist: 0.0
[knn bsf: 5.41523e-10] level 0 - node 7368 LBG dist: 8.165076328021279e-11
[knn bsf: 4.99888e-10] level 0 - node 6335 min. DTW: 4.633895522821579e-10
[knn bsf: 4.99888e-10] level 2 - node 134 LBG dist: 5.1672611011303917e-11
[knn bsf: 4.99888e-10] level 2 - node 6622 LBG dist: 4.5083040824916254e-07
[knn bsf: 4.99888e-10] level 2 - node 14926 LBG dist: 0.0
[knn bsf: 4.99888e-10] level 0 - node 139 LBG dist: 0.0
[knn bsf: 4.99888e-10] level 0 - node 9306 LBG dist: 1.8053602633340352e-11
[knn bsf: 4.99888e-10] level 0 - node 13666 LBG dist: 1.6383938682866842e-12
[knn bsf: 3.57666e-10] level 0 - node 139 min. DTW: 1.347703845248823e-10
[knn bsf: 3.57666e-10] level 1 - node 6336 LBG dist: 0.0
[knn bsf: 3.57666e-10] level 1 - node 13303 LBG dist: 0.0
[knn bsf: 3.57666e-10] level 0 - node 132 LBG dist: 1.613089352401759e-09
[knn bsf: 3.57666e-10] level 0 - node 13302 LBG dist: 0.0
[knn bsf: 3.57666e-10] level 0 - node 13302 min. DTW: 3.9043201487942157e-10
[knn bsf: 3.57666e-10] level 0 - node 8417 LBG dist: 0.0
[knn bsf: 3.57666e-10] level 0 - node 11059 LBG dist: 0.0
[knn bsf: 3.57666e-10] level 0 - node 8417 min. DTW: 5.679729295600564e-10
[knn bsf: 1.79091e-10] level 0 - node 11059 min. DTW: 1.1112064920617997e-10
[knn bsf: 1.79091e-10] level 1 - node 7720 LBG dist: 2.208433518027373e-08

84

A.3 Exemplary k-NN Queries

[knn bsf: 1.79091e-10] level 1 - node 14925 LBG dist: 0.0
[knn bsf: 1.79091e-10] level 0 - node 128 LBG dist: 0.0
[knn bsf: 1.79091e-10] level 0 - node 7719 LBG dist: 1.2724662036862344e-08
[knn bsf: 1.79091e-10] level 0 - node 128 min. DTW: 4.469617605410457e-10
[knn bsf: 1.79091e-10] level 0 - node 13666 min. DTW: 3.15338366423286e-10
[knn bsf: 1.79091e-10] level 3 - node 3578 LBG dist: 2.479937062711201e-10
[knn bsf: 1.79091e-10] level 3 - node 13495 LBG dist: 2.3786070683897696e-10
[knn bsf: 1.79091e-10] level 3 - node 13577 LBG dist: 8.566082210474352e-11
[knn bsf: 1.79091e-10] level 0 - node 9306 min. DTW: 5.288324962409504e-10
[knn bsf: 1.79091e-10] level 4 - node 611 LBG dist: 6.000479074288123e-11
[knn bsf: 1.79091e-10] level 4 - node 2492 LBG dist: 1.5306423573601883e-10
[knn bsf: 1.79091e-10] level 4 - node 16388 LBG dist: 1.6956650552269606e-10
[knn bsf: 1.79091e-10] level 1 - node 3621 LBG dist: 3.656143360858362e-10
[knn bsf: 1.79091e-10] level 1 - node 10226 LBG dist: 1.8919848929042113e-10
[knn bsf: 1.79091e-10] level 1 - node 129 LBG dist: 5.1672611011303917e-11
[knn bsf: 1.79091e-10] level 1 - node 133 LBG dist: 2.0819389046355206e-08
[knn bsf: 1.79091e-10] level 0 - node 9291 LBG dist: 5.73694450778397e-11
[knn bsf: 1.79091e-10] level 0 - node 14924 LBG dist: 3.696261480771607e-10
[knn bsf: 1.79091e-10] level 0 - node 9291 min. DTW: 5.454295872557366e-10
[knn bsf: 1.79091e-10] level 3 - node 302 LBG dist: 4.479325417496809e-10
[knn bsf: 1.79091e-10] level 3 - node 7573 LBG dist: 2.0284994281592104e-10
[knn bsf: 1.79091e-10] level 3 - node 14789 LBG dist: 4.3496402346397064e-10
[knn bsf: 1.79091e-10] level 1 - node 170 LBG dist: 1.1233211648369213e-09
[knn bsf: 1.79091e-10] level 1 - node 9762 LBG dist: 3.1510635881383756e-10
[knn bsf: 1.79091e-10] level 0 - node 7368 min. DTW: 8.842193648181429e-10
[knn bsf: 1.79091e-10] level 2 - node 301 LBG dist: 4.172609075245131e-10
[knn bsf: 1.79091e-10] level 2 - node 13576 LBG dist: 4.3011495719803036e-10
[knn bsf: 1.79091e-10] level 3 - node 1068 LBG dist: 4.808619308227447e-10
[knn bsf: 1.79091e-10] level 3 - node 5487 LBG dist: 3.928554057541039e-10
[knn bsf: 1.79091e-10] level 3 - node 2317 LBG dist: 4.489510651596557e-10
[knn bsf: 1.79091e-10] level 3 - node 16387 LBG dist: 4.204858013159738e-10
[knn bsf: 1.79091e-10] level 3 - node 16976 LBG dist: 4.4345386367506687e-10

LBG calculations: 75
examined inner nodes: 31
examined leaf nodes: 12
LB_Kim calculations: 7989
DTW calculations: 2954

k | ts_id | name | distance | start_index | end_index | stats
---+---------+--------+----------------------+-------------+-----------+-------
1 | 2968781 | IP | 1.1112064920618e-10 | 190 | 208 | ...
2 | 1146578 | Click | 1.1620426968856e-10 | 190 | 208 | ...
3 | 3146497 | Java | 1.34770384524882e-10 | 190 | 208 | ...
4 | 1531883 | dialog | 1.40257448743664e-10 | 190 | 208 | ...
5 | 5465057 | Server | 1.79090613709668e-10 | 190 | 208 | ...

Time: 900.352 ms

Listing A.4 Nearest neighbors of Microsoft for the years 1990 − 2008. Note that the last examined

nodes are inner nodes, as their parent nodes have a LBG distance smaller than the

best-so-far distance (bsf). The algorithm breaks once the �rst node on the min-heap

has a LBG distance larger than the best-so-far distance.

85

A Appendix

A.3.2 Queries on the 103-Million Dataset
SELECT * FROM knn('and the', start_index => 190, end_index => -1,
k => 1, radius => -1, verbose => True);
get time series...
[knn bsf: inf] level 14 - node 119218 LBG dist: 5.4282091029398164e-05
[knn bsf: inf] level 14 - node 235501 LBG dist: 0.0
[knn bsf: inf] level 13 - node 119219 LBG dist: 5.428154159372357e-05
[knn bsf: inf] level 13 - node 235499 LBG dist: 0.0
[knn bsf: inf] level 12 - node 119217 LBG dist: 5.428048887737655e-05
[knn bsf: inf] level 12 - node 235498 LBG dist: 0.0
[knn bsf: inf] level 11 - node 119216 LBG dist: 5.427937674565127e-05
[knn bsf: inf] level 11 - node 235497 LBG dist: 0.0
[knn bsf: inf] level 10 - node 119215 LBG dist: 5.427636669450485e-05
[knn bsf: inf] level 10 - node 160225 LBG dist: 0.0
[knn bsf: inf] level 9 - node 97259 LBG dist: 5.42730964034773e-05
[knn bsf: inf] level 9 - node 149173 LBG dist: 0.0
[knn bsf: inf] level 8 - node 25106 LBG dist: 5.426609570241282e-05
[knn bsf: inf] level 8 - node 120530 LBG dist: 0.0
[knn bsf: inf] level 8 - node 170893 LBG dist: 5.425029704579764e-05
[knn bsf: inf] level 7 - node 61280 LBG dist: 5.422558682749819e-05
[knn bsf: inf] level 7 - node 120529 LBG dist: 5.426512058400254e-05
[knn bsf: inf] level 7 - node 143518 LBG dist: 0.0
[knn bsf: inf] level 6 - node 86030 LBG dist: 0.0
[knn bsf: inf] level 6 - node 143517 LBG dist: 5.47076576741661e-05
[knn bsf: inf] level 5 - node 13256 LBG dist: 5.460572426394529e-05
[knn bsf: inf] level 5 - node 86029 LBG dist: 0.0
[knn bsf: inf] level 5 - node 163040 LBG dist: 5.460570010581543e-05
[knn bsf: inf] level 4 - node 810 LBG dist: 1.8246882339278587e-05
[knn bsf: inf] level 4 - node 86028 LBG dist: 0.0
[knn bsf: inf] level 4 - node 207152 LBG dist: 1.8191058734563358e-05
[knn bsf: inf] level 3 - node 457 LBG dist: 0.0
[knn bsf: inf] level 3 - node 86027 LBG dist: 2.735854560604522e-05
[knn bsf: inf] level 3 - node 221902 LBG dist: 2.7242370486059292e-05
[knn bsf: inf] level 2 - node 14 LBG dist: 0.0
[knn bsf: inf] level 2 - node 456 LBG dist: 4.406678191897728e-05
[knn bsf: inf] level 2 - node 222965 LBG dist: 4.225945913650783e-05
[knn bsf: inf] level 1 - node 6 LBG dist: 0.0
[knn bsf: inf] level 1 - node 9 LBG dist: 4.6773398496441175e-05
[knn bsf: inf] level 1 - node 227024 LBG dist: 4.2412721726216795e-05
[knn bsf: inf] level 0 - node 2 LBG dist: 0.0006023584819906798
[knn bsf: inf] level 0 - node 3 LBG dist: 0.0
[knn bsf: 4.44487e-07] level 0 - node 3 min. DTW: 4.4448727202399743e-07

LBG calculations: 37
examined inner nodes: 15
examined leaf nodes: 1
LB_Kim calculations: 325
DTW calculations: 181

k | ts_id | name | distance | start_index | end_index | stats
---+----------+--------+----------------------+-------------+-----------+-------
1 | 63806928 | on the | 4.44487272023997e-07 | 190 | 208 | ...

Time: 58.644 ms

Listing A.5 Nearest neighbors of and the for the years 1990 − 2008.

86

A.3 Exemplary k-NN Queries

SELECT * FROM knn('the United', start_index => -1, end_index => -1,
k => 1, radius => -1, verbose => True);
get time series...
[knn bsf: inf] level 14 - node 119218 LBG dist: 1.826339364954095e-07
[knn bsf: inf] level 14 - node 235501 LBG dist: 0.0
[knn bsf: inf] level 13 - node 119219 LBG dist: 1.8252825135969383e-07
[knn bsf: inf] level 13 - node 235499 LBG dist: 0.0
[knn bsf: inf] level 12 - node 119217 LBG dist: 1.82325843055561e-07
[knn bsf: inf] level 12 - node 235498 LBG dist: 0.0
[knn bsf: inf] level 11 - node 119216 LBG dist: 1.8211213065783284e-07
[knn bsf: inf] level 11 - node 235497 LBG dist: 0.0
[knn bsf: inf] level 10 - node 119215 LBG dist: 1.8153432291668496e-07
[knn bsf: inf] level 10 - node 160225 LBG dist: 0.0
[knn bsf: inf] level 9 - node 97259 LBG dist: 1.809075821485947e-07
[knn bsf: inf] level 9 - node 149173 LBG dist: 0.0
[knn bsf: inf] level 8 - node 25106 LBG dist: 1.795695003428566e-07
[knn bsf: inf] level 8 - node 120530 LBG dist: 0.0
[knn bsf: inf] level 8 - node 170893 LBG dist: 1.765677561658728e-07
[knn bsf: inf] level 7 - node 61280 LBG dist: 2.4315641558358934e-06
[knn bsf: inf] level 7 - node 120529 LBG dist: 2.453721322013358e-06
[knn bsf: inf] level 7 - node 143518 LBG dist: 0.0
[knn bsf: inf] level 6 - node 86030 LBG dist: 0.0
[knn bsf: inf] level 6 - node 143517 LBG dist: 1.50276867097708e-06
[knn bsf: inf] level 5 - node 13256 LBG dist: 2.6244576711015473e-06
[knn bsf: inf] level 5 - node 86029 LBG dist: 0.0
[knn bsf: inf] level 5 - node 163040 LBG dist: 2.6179739338393253e-06
[knn bsf: inf] level 4 - node 810 LBG dist: 4.522902016268542e-07
[knn bsf: inf] level 4 - node 86028 LBG dist: 0.0
[knn bsf: inf] level 4 - node 207152 LBG dist: 4.3667315637063347e-07
[knn bsf: inf] level 3 - node 457 LBG dist: 0.0
[knn bsf: inf] level 3 - node 86027 LBG dist: 7.825428943506582e-07
[knn bsf: inf] level 3 - node 221902 LBG dist: 7.024008699847457e-07
[knn bsf: inf] level 2 - node 14 LBG dist: 0.0
[knn bsf: inf] level 2 - node 456 LBG dist: 1.1185841457901548e-06
[knn bsf: inf] level 2 - node 222965 LBG dist: 6.997132874688362e-07
[knn bsf: inf] level 1 - node 6 LBG dist: 0.0
[knn bsf: inf] level 1 - node 9 LBG dist: 2.2953788473650518e-07
[knn bsf: inf] level 1 - node 227024 LBG dist: 3.0835804262542576e-09
[knn bsf: inf] level 0 - node 2 LBG dist: 0.02189835768101354
[knn bsf: inf] level 0 - node 3 LBG dist: 0.0
[knn bsf: 2.96448e-08] level 0 - node 3 min. DTW: 2.964480660174612e-08
[knn bsf: 2.96448e-08] level 0 - node 4 LBG dist: 4.347839287126069e-09
[knn bsf: 2.96448e-08] level 0 - node 224637 LBG dist: 9.464199988897262e-08
[knn bsf: 2.96448e-08] level 0 - node 4 min. DTW: 1.9423857190330249e-07

LBG calculations: 39
examined inner nodes: 16
examined leaf nodes: 2
LB_Kim calculations: 1191
DTW calculations: 295

k | ts_id | name | distance | start_index | end_index | stats
---+----------+---------------+----------------------+-------------+-----------+-------
1 | 96222167 | United States | 2.96448066017461e-08 | 0 | 208 | ...

Time: 7600.031 ms (00:07.600)

Listing A.6 Nearest neighbors of the United for the years 1800 − 2008.

87

A Appendix

SELECT * FROM knn('the United', start_index => 100, end_index => 130,
k => 2, radius => -1, verbose => True);
get time series...
[knn bsf: inf] level 14 - node 119218 LBG dist: 8.062464804207799e-07
[knn bsf: inf] level 14 - node 235501 LBG dist: 0.0
[knn bsf: inf] level 13 - node 119219 LBG dist: 8.061609508853667e-07
[knn bsf: inf] level 13 - node 235499 LBG dist: 0.0
[knn bsf: inf] level 12 - node 119217 LBG dist: 8.059970881347681e-07
[knn bsf: inf] level 12 - node 235498 LBG dist: 0.0
[knn bsf: inf] level 11 - node 119216 LBG dist: 8.058239933261124e-07
[knn bsf: inf] level 11 - node 235497 LBG dist: 0.0
[knn bsf: inf] level 10 - node 119215 LBG dist: 8.053555862054853e-07
[knn bsf: inf] level 10 - node 160225 LBG dist: 0.0
[knn bsf: inf] level 9 - node 97259 LBG dist: 8.048468216587114e-07
[knn bsf: inf] level 9 - node 149173 LBG dist: 0.0
[knn bsf: inf] level 8 - node 25106 LBG dist: 8.037581999942891e-07
[knn bsf: inf] level 8 - node 120530 LBG dist: 0.0
[knn bsf: inf] level 8 - node 170893 LBG dist: 8.013039300431562e-07
[knn bsf: inf] level 7 - node 61280 LBG dist: 8.737239722849553e-07
[knn bsf: inf] level 7 - node 120529 LBG dist: 8.809948916855471e-07
[knn bsf: inf] level 7 - node 143518 LBG dist: 0.0
[knn bsf: inf] level 6 - node 86030 LBG dist: 0.0
[knn bsf: inf] level 6 - node 143517 LBG dist: 8.729475382104447e-07
[knn bsf: inf] level 5 - node 13256 LBG dist: 8.69579058277419e-07
[knn bsf: inf] level 5 - node 86029 LBG dist: 0.0
[knn bsf: inf] level 5 - node 163040 LBG dist: 8.66333131044798e-07
[knn bsf: inf] level 4 - node 810 LBG dist: 8.647254945265137e-07
[knn bsf: inf] level 4 - node 86028 LBG dist: 0.0
[knn bsf: inf] level 4 - node 207152 LBG dist: 8.613974605715504e-07
[knn bsf: inf] level 3 - node 457 LBG dist: 0.0
[knn bsf: inf] level 3 - node 86027 LBG dist: 8.866930945679905e-07
[knn bsf: inf] level 3 - node 221902 LBG dist: 8.236557026781433e-07
[knn bsf: inf] level 2 - node 14 LBG dist: 0.0
[knn bsf: inf] level 2 - node 456 LBG dist: 1.0285315664521846e-06
[knn bsf: inf] level 2 - node 222965 LBG dist: 9.223030029750501e-07
[knn bsf: inf] level 1 - node 6 LBG dist: 0.0
[knn bsf: inf] level 1 - node 9 LBG dist: 5.878268680118461e-07
[knn bsf: inf] level 1 - node 227024 LBG dist: 3.0255240544908576e-08
[knn bsf: inf] level 0 - node 2 LBG dist: 0.0035411292104014776
[knn bsf: inf] level 0 - node 3 LBG dist: 0.0
[knn bsf: 1.81180e-08] level 0 - node 3 min. DTW: 1.0009375719301362e-08

LBG calculations: 37
examined inner nodes: 15
examined leaf nodes: 1
LB_Kim calculations: 325
DTW calculations: 185

k | ts_id | name | distance | start_index | end_index | stats
---+----------+---------------+----------------------+-------------+-----------+-------
1 | 60130037 | New York | 1.00093757193014e-08 | 100 | 130 | ...
2 | 96222167 | United States | 1.81180182953422e-08 | 100 | 130 | ...

Time: 108.803 ms

Listing A.7 Nearest neighbors of the United for the years 1900 − 1930. Note that the resulting

neighbors di�er from the ones in Listing A.6 where another interval is queried.

88

	Abstract
	Zusammenfassung
	Introduction
	Related Work
	Whole Matching and Subsequence Matching
	Dimensionality Reduction and Indexing of Time Series
	Transformation-Based Approximation
	Piecewise Approximation

	Fundamentals
	k-Nearest Neighbors Algorithm
	Dynamic Time Warping
	Constraints
	Lower Bounds

	TWIST
	Data Structure
	Index Construction
	k-NN Querying
	Evaluation

	R-Tree

	Time Series Envelopes Index Tree
	Overview
	Data Structure
	Index Construction
	Traversal
	Splitting
	Reinsertion

	k-NN Querying
	Fundamental Query Algorithm
	Querying with Segmented Envelopes

	Implementation
	Tools and Languages
	PostgreSQL
	Python

	Architecture
	Database Design
	TSEIT
	Performance Optimizations
	Configurable Parameters
	TWIST

	TSEIT Manager
	Technical Evaluation
	Static Code Analysis
	Profiling

	Evaluation
	Setup
	Environment
	Datasets
	k-NN Queries
	Default Configuration

	Metrics
	Index and k-NN Metrics
	Correlation between Metrics

	Parameter Evaluation
	Common Parameter Values
	Varying Parameter Values

	Insertion Order
	Insertion Time
	Index Size
	Inserting and Querying 103 Million Time Series
	Comparison with TWIST

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Configuration of TSEIT
	Configuration of PostgreSQL
	Exemplary k-NN Queries
	Queries on the 7-Million Dataset
	Queries on the 103-Million Dataset

