
Eberhard Karls Universität Tübingen

Mathematisch-Naturwissenschaftliche Fakultät

Wilhelm-Schickard-Institut für Informatik

Bachelor Thesis in

Computer Science in Media

Implementation of a Browser-based Interface for
Provenance Analysis

Janek Bettinger

2014/30/09

Reviewer

Prof. Dr. Torsten Grust

Database Systems Research Group

University of Tübingen

Advisor

Tobias Müller

Database Systems Research Group

University of Tübingen

Implementation of a Browser-based Interface for Provenance Analysis
Janek Bettinger
Bachelor Thesis in Computer Science in Media

(Bachelorarbeit in Medieninformatik)

Eberhard Karls Universität Tübingen

Period: 2014/05/30 – 2014/09/30

i

Abstract

Data provenance is a research topic dealing with the origins of generated data. An

already existing tool by the Database Research Group of the University of Tübin-

gen computes provenance relations of Python programs and outputs its results in

the relational data format.

The primary purpose of this thesis is the development of an interactive browser-

based interface that makes the analysis results human-accessible.

ii

Contents

1 Introduction 1

1.1 Provenance Analysis . 1

1.2 Aims . 1

1.3 Interface . 1

1.4 Document Structure . 2

2 Fundamentals 3

2.1 Data Provenance . 3

2.1.1 Program Slicing . 3

2.2 Provenance Analysis Tool (PAT) 4

2.2.1 Sample Program . 4

2.2.2 Database Structure . 5

2.3 Languages and Formats . 7

2.3.1 Server-side . 7

2.3.2 Communication Layer . 8

2.3.3 Client-side . 8

2.4 Tools, Libraries and Frameworks 13

2.4.1 Server-side . 13

2.4.2 Client-side . 13

2.4.3 Development . 16

3 Implementation 19

3.1 Setup . 19

iv CONTENTS

3.2 Server . 20

3.2.1 Database Preparations . 20

3.2.2 Application Programming Interface (API) 22

3.3 Client . 24

3.3.1 Overall Structure . 24

3.3.2 Selection Model . 24

3.4 Charts . 28

3.4.1 Table . 28

3.4.2 Scatter Plot . 30

3.4.3 Histogram . 32

3.4.4 Line Mosaic Plot . 35

3.5 Fine-tuning . 38

3.5.1 Memory Leaks . 38

3.5.2 Validation . 40

4 Conclusion and Outlook 41

4.1 Conclusion . 41

4.2 Future Work . 41

4.3 Outlook . 42

Bibliography 43

List of Figures 45

List of Code Listings 47

A CD-ROM Content 49

Chapter 1

Introduction

1.1 Provenance Analysis

Ultimately, most computer programs process data. They consume input values,

operate on them and output a result. As return values depend on the input val-

ues, they are related to each other. Finding the values a�ecting another one is

generalized as provenance analysis that is about deriving the origins of generated

data.

The Database Systems Research Group at the University of Tübingen has de-

veloped a tool for provenance analysis concerning Python programs. It able to

compute the provenance of incoming and outgoing value of functions.

1.2 Aims

The results of the provenance analysis, however, only exist in form of raw data in

a relational database and not comprehensible for humans in an easy and intuitive

manner. This work devotes with the development of an interface for visualizing the

processed data together with the provenance relationships within. It aims to sim-

plify the comprehension of the underlying program like in order to reveal sources

of error.

1.3 Interface

The interface is a single-page web application that is backed by a server-sided

component for retrieving the results of the provenance analysis. As illustrated in

�gure 1.1, each function of the analyzed Python program is listed together with all

of its input and output parameters. Four di�erent visualization respectively chart

types allow the user to view the parameters’ values in a proper representation:

2 CHAPTER 1. INTRODUCTION

• Table — displays the values without further processing

• Scatter Plot — maps numeric value pairs to a two-dimensional coordinate

system

• Histogram — represents the distribution of numeric values

• Line Mosaic Plot — allows to recognize relationships between di�erent cate-

gorical variables

By selecting one or more values by a simple mouse click all related values get

highlighted in all other charts illustrating both provenances and impacts.

function1(input1, input2) → output

input1

chart type ▼ + – chart type ▼ + –

input2

chart type ▼ + –

output

chart type ▼ + –

1

function2(input) → output 2

output

chart type ▼ + –

input

chart type ▼ + –

Figure 1.1: Scheme of the overall interface including (from left) adumbrated table,

scatter plot, histogram and line mosaic plot whereby gray chart elements indicate

highlighting

1.4 Document Structure

While this �rst chapter has given a short overview of the topic, the subsequent

chapter 2 introduces provenance analysis and the back-end tool, as well as funda-

mental techniques and resources required for development and implementation.

Latter is described in detail in chapter 3, before the last chapter provides a conclu-

sion and outlook.

Chapter 2

Fundamentals

Data provenance forms the basis of the analysis tool whose results get visualized

by the interface developed as part of this thesis. The theoretical aspects of data

provenance and the functional principles of the analysis tool are introduced here-

inafter. Furthermore, essential programming and markup languages as well as �le

formats and third-party tools that have been used for the implementation are ex-

pounded in this chapter. Server-sided techniques are used to access and deliver

the analysis results, while client-sided ones are required for the concrete inter-

face including charts. Ultimately addressed development tools aim to improve the

work�ow and the quality of source code.

2.1 Data Provenance

The �eld of data provenance research deals with the derivation history of gener-

ated data. In the context of database systems [BKT01] de�nes it as the description

of the origins of data and the process by which it arrived in a database. Provenance

analysis helps understanding data sets and improves debugging capabilities. How-

ever, those ideas are not limited to databases and can be transfered to other �elds,

like the basis of this work is data provenance concerning Python programs.

2.1.1 Program Slicing

In a manner analogous to data provenance is a technique called program slicing.

First described by [Wei81] and further developed by [KL88], it reduces a program

to a subset of statements that a�ect the value of a certain variable. So program

slicing explains relationships using parts of the program, while data provenance

uses parts of the dataset for an explanation.

4 CHAPTER 2. FUNDAMENTALS

2.2 Provenance Analysis Tool (PAT)

The Provenance Analysis Tool calculates bidirectional relationships between in-

coming and outgoing values of functions in Python programs. While it describes

the data provenance, it makes use of program slicing techniques without reveal-

ing concrete statements in the result. However, the particular function call a value

belongs to is acknowledged.

Currently, only a subset of the Python language is supported. Among other

things, programs to analyze may not contain statements that perform multiple

kinds of operations at once.

The tool is written in Python and stores its results in a PostgreSQL database.

Both Python and PostgreSQL are addressed in section 2.3.

2.2.1 Sample Program

For a clearer understanding of PAT’s functional principle a very basic example is

given hereinafter and extended subsequently to illustrate more of its functionality.

def sum(arg_data):

res = []

for d in arg_data:

a = d[’a’]

b = d[’b’]

sum = a + b

r = {}

r[’v’] = sum

res.append(r) # r == {’v’: d[’a’] + d[’b’]}

return res

data = [{’a’: 1, ’b’: 2, ’c’: 3},]

summed = sum(data) # [{’v’: 3}]

Listing 2.1: Sample Python program that calculates sums

Listing 2.1 shows a simple program with one function sum() that takes and

returns a list of dictionaries. For each dictionary the sum of the items with key a

and b is calculated and stored in a new dictionary as item v. In the example, the

given list contains only one dictionary with three items a, b and c. Obviously, the

function’s return value is [{’v’: 3}].

PAT logs the invocation of sum() including every value of the sole input param-

eter data_in and the output parameter res. However, the decisive computation

by the analysis tool is the provenance of the resulting {’v’: 3} that is {’a’: 1}

and {’b’: 2}, but not the unused {’c’: 3}.

2.2. PROVENANCE ANALYSIS TOOL (PAT) 5

The sample program gets extended in listing 2.2 in order to demonstrate func-

tion composition that is passing the result of a function as the argument of the

next. In this example, the already established sum() and a new function square()

are composed. Latter works similar to the former one and calculates the square of

an item with key ’v’.

Now the value [{’v’: 3}] is used in two di�erent contexts. On the one hand

as the returned value of sum() and on the other hand as incoming argument value

of square(). What matters is that PAT recognizes the composition and that it

stores a link between the usage as outgoing and incoming value.

...

summed == [{’v’: 3}]

def square(arg_data):

res = []

for d in arg_data:

v = d[’v’]

square = v * v

r = {}

r[’v’] = square

res.append(r) # r == {’v’: d[’v’] * d[’v’]}

return res

squared = square(summed) # [{’v’: 9}]

Listing 2.2: Extension of the prior program

2.2.2 Database Structure

PAT writes its results into several database tables whereby many are linked to

each other by foreign keys. Those needed for interpretation and the creation of

the visualization are illustrated in �gure 2.1 and further described hereinafter.

functioncalls Logs all, but only those functions that are called in the analyzed

program in the correct order. For each call, the table contains among other details

the functionname and an unique identi�er id.

argumentvalues and returnvalues For each call in functioncalls, those ta-

bles contain all incoming respectively outgoing values whereby the particular call

is referenced by a callid. While the tables are in �rst normal form as all data is

atomic, they represent non-atomic nested structures called containers. Each list,

dictionary, but also each of its items introduces a further deeper level respective

container down to atomic values such as numbers or strings. The column con-

tainerid each references the superior container and is NULL at the highest level

6 CHAPTER 2. FUNDAMENTALS

pcompo

id INTEGER

argumentvalueid INTEGER

returnvalueid INTEGER

pmain

id INTEGER

returnvalueid INTEGER

argumentvalueid INTEGER

returnvalues

id INTEGER

callid INTEGER

varname CHARACTER VARYING

containerid INTEGER

subscript CHARACTER VARYING

value CHARACTER VARYING

atomic BOOLEAN

argumentvalues

id INTEGER

callid INTEGER

varname CHARACTER VARYING

containerid INTEGER

subscript CHARACTER VARYING

value CHARACTER VARYING

atomic BOOLEAN

functioncalls

id INTEGER

callerid INTEGER

functionname CHARACTER VARYING

returnname CHARACTER VARYING

Figure 2.1: Diagram of the database tables holding the results of the provenance

analysis by PAT where arrows indicate foreign-key relationships and non-NULLable

columns are printed in bold

where, however, the column varname holding the parameter name is populated.

Moreover, the column subscript contains the index if the value represents an

item of an array or the key if is an item of a dictionary. If the column atomic indi-

cates TRUE, a value can be found in the value column.

The following two tables describe the crucial part of the analysis, namely the

data provenance.

pmain Contains the provenance of return values concerning the respective func-

tion’s argument values. The relationships between incoming and outgoing values

are each established by an argumentvalueid and returnvalueid. The referenced

values do not necessarily have to be atomic. Relations between containers and

atomic values may exist, too.

pcompo Constructed like pmain, this table contains the provenance of argument

values in case of function composition. So it describes relationships between out-

going and incoming values of two functions when the result of the �rst one is

passed as the argument of the next one.

Figure 2.2 illustrates the content of the two provenance tables on the basis of

the previous sample code in listings 2.1 (sum()) and 2.2 (square(sum())).

2.3. LANGUAGES AND FORMATS 7

pmain

pmain

pcompo

a:1 b:2 c:3{ }[]

1 2 53 4

v:3{ }[]

31 2

86 7

v:9{ }[]

64 5

3×

argumentvalues

argumentvalues

returnvalues

returnvalues

argumentvalueid

returnvalueid

arumentvalueid

returnvalueid

Figure 2.2: Abstract illustration of the value tables as well as the provenance tables

pmain and pcompo containing the results of the analysis of the previous sample pro-

gram (listing 2.2). Gray boxes indicate containers, black values are atomic ones and

the arrows illustrate the provenance relationships.

2.3 Languages and Formats

While Python and JavaScript are the main programming languages on server re-

spectively client side, several further languages or �le formats are required for the

overall implementation of the graphical interface. All of them are outlined below.

2.3.1 Server-side

Python

Developed in the early 1990s and constantly enhanced, Python
1

is an interpreted

programming language that supports diverse programming paradigms. Similar

to Java or C#, Python has a compiler that translates the source code into byte

code that is executed by a virtual machine, the interpreter. It is cross-platform, so

Python programs usually run without modi�cation on every operating system that

is supported by a Python interpreter. That includes all present-day major systems.

As the syntax of Python is very simple, no further details are given in this work.

Sample programs are merely listed in the preceding section 2.2.1.

Python is used in a variety of ways in this work. While Python programs

get analyzed, both PAT and the interface’s server component are written in this

language.

1https://www.python.org/

https://www.python.org/

8 CHAPTER 2. FUNDAMENTALS

PostgreSQL

PostgreSQL
2

is an advanced open-source database system running on all major

operating systems. As object-relational database management system (ORDBMS)

it is based on the relational data model where data is organized in relations as

sets of tuples of data. Besides, it implements an object-oriented model where the

structure and queries support classes, objects and inheritance. However, latter

aspect is immaterial for this work.

A PostgreSQL database holds the results of PAT, while PostgreSQL queries are

used to retrieve and manipulate the data.

2.3.2 Communication Layer

JavaScript Object Notation (JSON)

JSON
3

is an open standard format derived by the JavaScript language. Never-

theless, it is language-independent as there are exist generators and parsers in

a large number of di�erent programming languages. The grammar specifying a

valid JSON document is simple and intuitive. According to the proposed standard

[Int14], a JSON value has to be either a string, number, array, boolean, null or

an object that wraps name–value pairs. Nesting is possible and common due to

arrays and objects that again may contain further atomic or non-atomic values.

Listing 2.3 shows a sample JSON document demonstrating the di�erent value

types. In this work JSON is used to exchange data between client and server.

{

"key / name": "value",

"key of an array": [

"a string", "", 1, true, false, null,

[-0.7E10, 42],

{ "foo": "bar" }

]

}

Listing 2.3: Sample JSON document demonstrating di�erent value types

2.3.3 Client-side

JavaScript

JavaScript is probably the most important programming language for client-side

web development that even can be used on server side in the meantime. It is a

2http://www.postgresql.org/
3http://json.org/

http://www.postgresql.org/
http://json.org/

2.3. LANGUAGES AND FORMATS 9

dynamic-typed and interpreted scripting language.

In this work, JavaScript makes up the largest part as it is used to generate

the visualizations on the client side. Moreover, server-sided JavaScript is used to

generate the �nal code for release.

In the following, some more language details are given.

Objects Objects are JavaScript’s fundamental data type. An object is an un-

ordered collection of key–value pairs, called properties, whereby the key has to be

a string (or an object with a toString() method). In contrast to many other pro-

gramming languages, objects are dynamic, so properties can usually be added and

deleted at runtime. Any value that is not a primitive one (string, number, boolean,

null or undefined) is an object, so even a functions is one. A property value that

is a function is called method.

Prototype-based inheritance In JavaScript there are no classes as known from

object-oriented languages like Java or C++, although this term is used in many

places. In prototype-based languages as JavaScript, objects may be associated as

the prototype for another object allowing latter to share the �st object’s attributes.

By calling a constructor function with the new operator a new object is created,

whereby the constructor’s prototype property is used as the prototype of the new

object. So all objects created by the same constructor function inherit from the

same prototype object. Therefore, they are called members or instances of the

same class. The constructor may be any function, but it usually is one that does

initialization such as setting property values.

In some cases using Object.create(), speci�ed in ECMAScript 5 in 2009, is more

appropriate as the prototype’s constructor function is not called, in contrast to a

construction using new .

Listing 2.4 demonstrates inheritance with an Animal base class and two sub

classes WildAnimal and DomesticAnimal whereby the prototype chain is estab-

lished using two di�erent ways. Using new is the traditional variant and makes

it harder to pass arguments to the prototype, while Object.create() is a newish

approach that is used in this work.

HyperText Markup Language (HTML)

HTML
4

is the common language for describing the content of web pages and usu-

ally interpreted by web browsers. The speci�cation [WW14] states that a HTML

document has to consist of a tree of elements and text, where each element is de-

noted by a start tag such as <p> and usually closed by an end tag as </p>. Tags have

to be nested without overlapping and can have attributes as the href attribute in

line 8 of listing 2.5.

4http://www.w3.org/html/

http://www.w3.org/html/

10 CHAPTER 2. FUNDAMENTALS

// Superclass / base class

function Animal(name) { constructor function of superclass
this.name = name || ’yet another animal’;

}

Animal.prototype.introduce = function() { de�ne a method of the prototype
console.log(’Hi, I\’m ’ + this.name + ’.’);

};

// Subclasses / derived classes

function WildAnimal() {} empty constructor function of subclass
WildAnimal.prototype = new Animal(); call Animal() & inherit its prototype
WildAnimal.prototype.constructor = WildAnimal; override inherited constructor property

function DomesticAnimal(name) {

Animal.call(this, name); execute Animal(name) with given this

}

DomesticAnimal.prototype = Object.create(Animal.prototype); inherit prototype
DomesticAnimal.prototype.constructor = DomesticAnimal;

DomesticAnimal.prototype.introduce = function() { shadow prototype property
console.log(’Hi, I\’m ’ + this.name + ’ and I live together with humans.’);

};

// Object creation and usage

var wild = new WildAnimal(); create WildAnimal object
var garfield = new DomesticAnimal(’Garfield’); create DomesticAnimal object

wild.introduce(); // Hi, I’m yet another animal. call method of object
garfield.introduce(); // Hi, I’m Garfield and I live together with humans.

Listing 2.4: Sample JavaScript programm demonstrating inheritance

A HTML document starts with a document type declaration that de�nes the

legal document structure as well as allowed elements and attributes. The subse-

quent html root element contains two elements: head and body. While the content

of the head element is not directly visible as it usually contains meta data and ref-

erences to scripts and style sheets, the body represents the actual content of the

document.

In this implementation the future HTML5 standard, that is already mostly sup-

ported by all modern web browsers, is used.

Document Object Model (DOM) The DOM is a speci�cation of an interface

for accessing and manipulating the content, structure and style of XML-based doc-

uments such as HTML documents. The DOM represents documents in a hierar-

chical tree-like structure whereby changes to the tree are incorporated back into

the presented document. "DOM events" allows to register event handlers on DOM

nodes that are triggered once an event (such as a mouse action) occurs. The DOM

tree can be inspected using the developer tools of modern web browser.

2.3. LANGUAGES AND FORMATS 11

1 <!DOCTYPE html> doctype
2 <html>

3 <head> head containing meta data
4 <title>Sample page</title>

5 </head>

6 <body> body containing visible content
7 <h1 id="title">Sample page</h1>

8 <p class="info">This is a simple sample.</p>

9 <p class="info highlight">Second info paragraph.</p>

10 </body>

11 </html>

Listing 2.5: Sample HTML5 document

Cascading Style Sheets (CSS)

While HTML is required for denoting the content of web pages, CSS describes their

look and formating. As speci�ed in [al11a], it is not only possible to style HTML

documents using CSS, but also other XML documents as SVG. A CSS �le consists

of a list of statements whereby the most important statement is a rule set that is

usually simply called "rule". In turn, a rule consists of at least one selector followed

by a list of declarations wrapped by curly brackets. A selector is a patterns to match

a set of elements in the HTML document tree and may be an unique identi�er, an

element name, a class name or even a complex contextual pattern.

Listing 2.6 shows an exemplary style sheet using di�erent types of selectors.

Together with the HTML document of listing 2.5 it results in a web page with gray

background, a large headline surrounded by a red border that is followed by two

underlined paragraphs where the �rst one is black and the second red.

For the implementation of the provenance visualization some features of the

upcoming standard CSS3
5

are used whose most important features are already

supported by modern web browsers. CSS3 provides among other things extended

selectors and nice-looking transitions.

Scalable Vector Graphics (SVG)

According to the speci�cation [al11b], SVG
6

is a markup "language for describ-

ing two-dimensional graphics in XML". SVG graphics can easily be embedded

into HTML documents as both include a DOM and can optionally be styled using

CSS. SVG facilitates three types of graphic objects: vector graphic shapes based on

primitives (rectangles, circles, ellipses, straight lines, polylines, polygons), raster

images and text. Those objects can be transformed to obtain more complex shapes,

furthermore simple animations are supported.

5http://www.w3.org/Style/CSS/current-work
6http://www.w3.org/Graphics/SVG/

http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Graphics/SVG/

12 CHAPTER 2. FUNDAMENTALS

body { type selector
background: #aaa;

}

#title { ID selector
font-size: 2em;

border: 2px solid red;

}

.info { class selector
text-decoration: underline;

}

.highlight { class selector
color: #ff0000;

}

h1:first-child + p { type, pseudo-class and adjacent selector
font-weight: bold;

}

Listing 2.6: Sample style sheet for the HTML document of listing 2.5

An advantage of vector graphics over pixel-based raster formats such as JPEG

or PNG is the ability of lossless resizing as they only store a description of objects,

but no concrete pixel values.

Listing 2.7 shows a HTML document with an embedded SVG that describes a

red circle with a 3 Pixel wide black border.

<!DOCTYPE html>

<html> [. . .]
<body>

<svg height="50" width="50">

<circle cx="25" cy="25" r="20"

stroke="black" stroke-width="3" fill="red" />

</svg>

</body>

</html>

Listing 2.7: Sample HTML document with inline SVG

Distinction to Canvas HTML5 introduced another technique for generating

graphics in web browsers: the canvas element (speci�cation [WW14] chapter

4.11.4). However, Canvas graphics do not scale as well as SVG graphics and do not

support animations and mouse hovering e�ects without complexity (see [Mic14]).

According to [Mic14], Canvas is better for complex real-time or high performance

2.4. TOOLS, LIBRARIES AND FRAMEWORKS 13

scenarios, while SVG is more appropriate for (more or less) static high �delity im-

ages. Nevertheless, almost any two-dimensional graphic can be drawn by using

either of both technologies. For the provenance visualization the decision came

to SVG as it seemed to be more pleasing for generating nice charts without large

e�ort.

2.4 Tools, Libraries and Frameworks

For both server and client it was made use of several libraries and frameworks.

While selecting it has been paid attention that these tools only cause a minimum

amount of overhead and that they are likely to be further developed.

2.4.1 Server-side

Bo�le.py

Bottle.py
7

is a lightweight web-framework for Python. It is used to deliver the

web page and to build an Application Programming Interface (API) that allows

clients to fetch results of the provenance analysis. The utilized build-in develop-

ment server is su�cient for non-public servers, however, any server written to the

Web Server Gateway Interface (WSGI) speci�cation can be used as server back-

end. WSGI describes the communication between server and application, but it is

not of importance for this work.

Psycopg

Psycopg
8

is a PostgreSQL database adapter for Python and is used for the server

application. An existing PostgreSQL plugin
9

for Bottle.py making use of Psycopg

did not work with object-oriented programming style and has been discarded for

this reason.

2.4.2 Client-side

RequireJS

JavaScript lacks a statement as import, include or require to load required source

code from other �les. This may pose problems if the amount of source �les is large

as the order script �les are loaded (on a web page) matters. Also the common

7http://bottlepy.org/
8http://initd.org/psycopg/
9https://github.com/raisoblast/bottle-pgsql

http://bottlepy.org/
http://initd.org/psycopg/
https://github.com/raisoblast/bottle-pgsql

14 CHAPTER 2. FUNDAMENTALS

approach of concatenating all script �les at the end of a development circle does

not eliminate this di�culty.

RequireJS
10

is a module loader implementing the Asynchronous Module De�-

nition (AMD). An AMD module is de�ned by an optional identi�er, an optional list

of dependencies and a factory function that instantiates the module or object. All

this resolves the di�culties mentioned above. Furthermore, RequireJS includes an

optimization tool for combining and minifying all scripts to reduce the number of

required server requests and to decrease the �le sizes.

j�ery

jQuery
11

is a popular JavaScript library to simplify among other things DOM ma-

nipulation, event handling and asynchronous data transfer. It is used throughout

the implementation where performance is not critical and native functions are in-

convenient.

j�ery UI A
12

set of user interface utilities built on top of jQuery that is required

for making the table visualization resizable.

Handlebars.js

Handlebars.js
13

is a JavaScript template engine and used to generate the HTML

document based on the results of the provenance analysis. It is an extension of the

logic-less template engine Mustache
14

and provides some level of logic that can be

further extended by custom helper functions. A plugin for RequireJS facilitates the

handling and activates the optimizer to pre-compile the templates into JavaScript

code in order to reduce the required runtime.

DataTables

Displaying tables on a web page does not seem to be di�cult. Indeed it is not, at

least if the amount of rows and columns is not that large. It turned out that even

modern web browsers are not able to load huge tables satisfactorily as they tend

to freeze or crash in such scenarios.

The jQuery library DataTables
15

together with the extension Scroller remedies

because it allows to only load and draw the visible part of a scrollable table. On

10http://requirejs.org/
11https://jquery.com/
12http://jqueryui.com/
13http://handlebarsjs.com/
14https://mustache.github.io/
15https://www.datatables.net/

http://requirejs.org/
https://jquery.com/
http://jqueryui.com/
http://handlebarsjs.com/
https://mustache.github.io/
https://www.datatables.net/

2.4. TOOLS, LIBRARIES AND FRAMEWORKS 15

scrolling, the required data is fetched from the server asynchronously. Therefore,

the size of a data set to display does not matter in principle.

Data-Driven-Documents (D3.js)

D3.js
16

, introduced in [BOH11], is a JavaScript library for creating visualizations

usually meaning SVG graphics. It is neither intended nor able to generate prede-

�ned convenient visualizations, but drives the construction of graphical forms as it

facilitates creating new DOM nodes based on text-based data. Moreover, animated

transitions that interpolate styles and attributes over time extend the possibilities

already a�orded by CSS3.

In this work, D3.js is used for the dynamic generation of histograms, scatter

plots and line mosaic plots.

Functionality One of D3.js’s core concepts is the binding of data to DOM ele-

ments and their creation based on data. Binding means attaching data to the DOM

tree which allows to access it at a later time, even using other tools and libraries.

Following the functional programming style, D3.js employs method chaining as

operators usually return a selection object representing a set of DOM nodes.

Listing 2.8 shows the steps required for creating three paragraphs (p elements)

each including the numbers 1, 2 or 3. First of all, the DOM element body and all

included paragraphs are selected if any exist yet. Otherwise, an empty selection is

returned. data() parses and counts the given data whereby everything past this

point is executed once for each single datum. The method enter() creates a new

data-bounded placeholder element respectively selection for each data element for

which no corresponding DOM element was found. Only subsequently a, p element

is actually appended to the DOM as child of the body. Finally, the text() method

evaluates the given function passing the current datum, and sets its return value

as the paragraph’s text content.

d3.select(’body’).selectAll(’p’)

.data([1, 2, 3])

.enter().append(’p’)

.text(function(d) { return d; });

Listing 2.8: Core concept of D3.js for creating DOM elements based on data

Discarded Frameworks

Multiple JavaScript libraries and frameworks have been examined at very early

state of development, especially for forming a clean structure of the whole appli-

16http://d3js.org/

http://d3js.org/

16 CHAPTER 2. FUNDAMENTALS

cation. The library Backbone.js
17

seemed to be a good choice as it is based on the

Model–View–Controller pattern and because it is known for its �exibility. How-

ever, it became apparent that most of the provided features are not really required.

Beside the framework AngularJS
18

, the comparable Ember.js
19

has been interesting,

especially as a plug-in
20

for (large) tables already exists. In the end, it has turned

out that all of the tested tools do not quite �t the needs. They are certainly great for

building feature-rich web applications that require frequent database access and

real-time updates of dynamic views as soon as the underlying data changes. But

all of this is not needed for a comparatively simple application as the provenance

visualization is. Database access is limited to reading and the analysis results do

not change while the visualization is running. Moreover, separation of models and

views as well as a noti�cation system can be easily implemented by hand. For a

basic structure RequireJS is entirely su�cient, and DataTables seems to be more

appropriate than the Ember.js plugin.

2.4.3 Development

Syntactically Awesome Stylesheets (Sass)

Sass
21

is a preprocessor for CSS that allows among other things the use of variables,

nested rules and custom functions such as for color manipulation. Sass supports

two di�erent syntaxes whereby for this work the Sassy CSS (SCSS) syntax is used

that merely extends the one of CSS.

JSDoc

JSDoc
22

is a markup language for annotating JavaScript source code similar as

Javadoc does with Java code. Finally, a HTML documentation website describing

the complete code can be generated.

JSHint

It is probably easier to write sloppy code in JavaScript than in Python or compiled

languages as Java or C as the language itself is not that strict. JSHint is a con�g-

urable JavaScript syntax checker and validator that tries to detect potential prob-

lems to increase the code quality. Moreover, it supports complying with coding

17http://backbonejs.org/
18https://angularjs.org/
19http://emberjs.com/
20https://addepar.github.io/ember-table/
21http://sass-lang.com/
22http://usejsdoc.org/

http://backbonejs.org/
https://angularjs.org/
http://emberjs.com/
https://addepar.github.io/ember-table/
http://sass-lang.com/
http://usejsdoc.org/

2.4. TOOLS, LIBRARIES AND FRAMEWORKS 17

guidelines as, for instance, line length limitations. It is a less rigorous community-

driven fork of JSLint that in turn has been inspired by the C tool Lint. As it is a

static code analysis tool, it is not able to determine whether a program is correct

or free of memory leaks.

JSHint is applied to all JavaScript code written as part of this thesis.

Node.js

Node.js is a server-sided platform for running JavaScript that is available for all

major operating systems. While it is possible to build complex network applica-

tions with Node.js, it merely has been used during development of this work to

optimize the build process.

Grunt

Grunt
23

is a Node.js task runner simplifying the execution of repetitive operations

as compiling and unit testing. The following task is performed to build the �nal

application code of this work:

1. JSHint — apply JSHint to all but third-party JavaScript code and break if

problems are detected

2. RequireJS — run the optimizer to generate one single mini�ed JavaScript �le

without log statements used for debugging

3. Sass — compile all SCSS �les to one single mini�ed CSS �le

4. Copy — copy �les such as the server application to a folder containing all

release �les

5. JSDoc — generate a HTML documentation website based on JSDoc annota-

tions

23http://gruntjs.com/

http://gruntjs.com/

18 CHAPTER 2. FUNDAMENTALS

Chapter 3

Implementation

After a short introduction to the overall setup, the particular components server

and client including all chart types are expounded. A �nal section on �ne tuning

arrangements closes this chapter.

3.1 Setup

The whole application is broken into two tiers as illustrated in �gure 3.1. A server

component delivers �les and the results of the provenance analysis fetched from a

database, while a client component represents the graphical interface running in

a web browser.

Client Server

JSON
(& files) SQLAPI

interface in
web browser

database holding
analysis results

server
application

Figure 3.1: Overall client–server setup

The client demands the provenance data via an API that receives and returns

JSON formatted strings. Static �les are requested using HTTP request by the

client’s web browser. The server manipulates and retrieves data of the PostgreSQL

database through SQL queries. Client and server application might run on the same

computer system, but do not have to necessarily as the server might be accessible

via the World Wide Web.

20 CHAPTER 3. IMPLEMENTATION

3.2 Server

The server’s main purpose is to provide an API that allows the client component

to retrieve the results of the provenance analysis. In this work, the server further

delivers static �les such as HTML, CSS, JavaScript and image �les. However, latter

task might be taken on by a more powerful web server in public environments.

The application is based on Bottle.py and uses Psycopg to access the database.

Bottle.py allows to link an URL path called route to a callback function that

generates the content of a response. The frameworks supports a wide range of con-

tent types and cares about a correct response header. Moreover, many Python data

structures are automatically transformed into an equivalent JSON representation.

As serving static �les is just a simple Bottle.py method call, only the imple-

mentation of the API, starting with database preparations, is further described.

3.2.1 Database Preparations

While all information required for generating the visualization is available in the

database, it is not that easy to receive it. As the data is distributed over multiple

tables, a lot of SQL joins are required to handle API requests. Moreover, recursive

queries are essential to obtain all related values for a given one. Because those

queries are expensive and run inconvenient long for large datasets, two additional

tables argumentvaluesRelations and returnvaluesRelations are created and

pre-calculated. They contain complete lists of related values (respectively their

IDs) as one-dimensional arrays for each value that has any relationships. This

means that not only the �rst related value is considered, but also its related ones

and so on (in one direction). It is di�erentiated between backward relationships

that indicate the provenance and forward relationships that exhibit the impact of

a value. Furthermore, argument and return value IDs are always kept separate

as their primary key value ranges overlap. So the additional relationship tables

each contain four columns plus one column id referencing the respective value.

Merely non-atomic related values are ignored to keep the results reasonable and

the amount manageable. However, this is an optional optimization that can be

readily deactivated in code.

Complex recursive queries �ll the new tables whereby the fundamental prin-

ciple is comparative simple. For forward relations the table pmain links argument

values with return values, while pcompo does the opposite as illustrated in �gure

3.2. Proper joins of those tables, visualized by informal join graphs in �gure 3.3,

can reveal all relationships in both directions.

So for instance, for retrieving all forward relationships of argument values the

table to consider �rst is pmain. It gives the IDs of related return values (in column

returnvalueid). Next, values related to those are essential. These are again ar-

gument values and can be found by performing a (left) join of pmain and pcompo

3.2. SERVER 21

argument
value

return
value

pmainpcompo

Figure 3.2: Forward relationships

under the condition that their returnvalueids match. The column argument-

valueid in pcompo now contains the desired IDs. After a further join of pcompo

and pmain with concurrent argumentvalueids, the procedure starts from the be-

ginning again. The process repeats itself as long as further relationships exist.

pmain
pm

pcompo
pc

pm.returnvalueid
= pc.returnvalueid

pc.argumentvalueid
= pm.argumentvalueid

start

pmain
pm

pcompo
pc

pc.returnvalueid
= pm.returnvalueid

pm.argumentvalueid
= pc.argumentvalueid

start

pmain
pm

pcompo
pc

pm.returnvalueid
= pc.returnvalueid

pc.argumentvalueid
= pm.argumentvalueid

start

pmain
pm

pcompo
pc

pc.returnvalueid
= pm.returnvalueid

pm.argumentvalueid
= pc.argumentvalueid

start

Figure 3.3: Informal join graphs for forward (left half) and backward (right) relations

of argument values (top half) and return values (bottom)

Beyond that, the value tables argumentvalues and returnvalues make it hard

to formulate queries that return values of a speci�c variable. So an additional

column varid is created and �lled by a straightforward recursive query that �nds

the ID of the respective root container.

The mentioned database preparation measures can be carried out subsequently

to the provenance analysis or on server start triggered by the server application.

Latter approach, supported by Psycopg, allows non-persistent modi�cations that

only apply while the server is running. Especially because of an increased startup

22 CHAPTER 3. IMPLEMENTATION

time this strategy has been rejected.

3.2.2 Application Programming Interface (API)

The server provides an API with two resources that allow clients to fetch the re-

sults of PAT via HTTP. The resources are explained below, while exemplary JSON

formatted responses, based on the analysis of the sample program in listing 2.1,

are illustrated in listing 3.1 and 3.2.

{

"calls": [

{

"id": 2,

"name": "sum",

"parameters": {

"input": [

{

"id": 1,

"name": "arg_data",

"subscripts": [

"a",

"b",

"c"

]

}

],

"output": [

{

"id": 1,

"name": "res",

"subscripts": [

"v"

]

}

]

}

}

]

}

Listing 3.1: Exemplary response to

/api/calls ↑

Listing 3.2: Exemplary response to

/api/values →

{

"requestid": 1,

"data": [

{

"a": {

"id": 3,

"value": "1",

"relations": {

"forward": {

"output": {

"1": [3]

}

}

}

},

"b": {

"id": 5,

"value": "2",

"relations": {

"forward": {

"output": {

"1": [3]

}

}

}

},

"c": {

"id": 4,

"value": "3",

"relations": {}

},

}

],

"count": {

"total": 1,

"this": 1, a�ected by limit*
"filtered": 1 a�ected by ids*

}

} * if any

3.2. SERVER 23

/api/calls Returns meta data about function calls such as function names and

associated parameters together with their subscripts. No additional parameters

can be passed to the resource.

/api/values Delivers atomic values and IDs of related values grouped by pa-

rameter as well as meta data. The following parameters have to be passed:

• type — either input or output indicating the parameter type

• subscripts — comma-separated sequence of subscripts

These parameters are optional:

• varid — identi�er of a parameter

• requestid — numeric identi�er that is part of the response

• offset — number of containers to skip

• limit — maximal number of containers to return

• ids — comma-separated sequence of value IDs used for �ltering

Originally, it was planned to formulate SQL queries so that their results can

be returned as response without further processing for best performance. How-

ever, that turned out to be di�cult as PostgreSQL does not really support nested

query results. For instance, aggregate functions such as array_agg() only work

for atomic values, but not for arrays. While multi-dimensional arrays are possible,

it is not allowed to create arrays with varying dimensions (see �gure 3.4, a). Other

a) ARRAY[ARRAY[1], ARRAY[1,2]] illegal

b) row(ARRAY[1], ARRAY[1,2]) legal, but still unsatisfactory

Figure 3.4: Attempts to create multi-dimensional structures in SQL

attempts such as working with row constructors (b) are not satisfactory due to bad

support by Psycopg that necessitates the use of regular expressions to obtain the

individual parts of the result. After all, it seemed like there is no appropriate way

to get along without post-processing the query results.

The progressed approach makes use of comparatively simple and straightfor-

ward SQL queries that bene�t from the introduced tables argumentvaluesRela-

tions respectively returnvaluesRelations. After the particular SQL query was

executed, the Python application once iterates over the query results with cost in

O(n) to obtain the proper nested structure.

Some arrangements improve the server’s performance and reduce the response

time. Count statements are cached, so they have not to be executed for each re-

quest. The same applies for the parameter identi�er varid that is cached for each

argumentvalue and returnvalue on server start to save one expensive SQL join

and to simplify the queries.

24 CHAPTER 3. IMPLEMENTATION

3.3 Client

As the client component is comprehensive, not all singe aspects, but only the main

ones as the core model and the di�erent charts are addressed in depth hereinafter.

3.3.1 Overall Structure

The client application running in web browsers is based on modules supported by

RequireJS and follows the object-oriented programming style. Figure 3.5 shows an

UML diagram of the most important classes and relationships. For clarity only the

prime attributes and methods are listed.

The application’s entry point is the �le main.js that initializes a single Main-

Controller object. It receives the chartLoader module which simply wraps the

constructor functions of the various chart types. Moreover, the controller requests

the /api/calls resource to create corresponding Call and Parameter objects on

the basis of its response. These objects are passed on a Handlebars template that

is evaluated in order to provide the content of the web page. For each Parame-

ter object the appropriate DOM node is located and stored in a (map-like) object.

Furthermore, a ChartsController is created per parameter which allows the user

to select a chart type and to add or remove charts. All concrete chart classes inherit

from BaseChart with an abstract method render() that has to be implemented

by subclasses such as TableChart or ScatterplotChart. The chart classes using

D3.js for graphic generation also inherit from D3Chart and ConfigurableD3Chart,

both providing appropriate helper methods.

Two observable model classes are required for interaction and correct highlighting

of selected and related values in all charts. The main model SelectionModel is

instantiated only once, and holds the IDs of currently selected as well as related

values. Public methods allow selection or unselection whereby related values are

always considered. Beyond that, the AggregationModel is additionally used apart

by charts that aggregate values, which are HistogramChart and LineMosaicPlot.

It also stores IDs of selected and related values, but now grouped by individual

aggregates (e. g. bars of a histogram) in order to determine how many values of

an aggregate are actually selected.

Beyond that, further classes exist like for the de�nition of custom data structures

as Set and ValueMeta. The important observer pattern is backed by event classes

and interfaces whereby latter only exist for documentary purposes as JavaScript

does not support that type natively.

3.3.2 Selection Model

The SelectionModel is the application’s most signi�cant model and required for

a correct highlighting of chart elements. Chart objects register as observers and

3.3. CLIENT 25

Figure 3.5: Incomplete UML diagram of the client application illustrating the most

important classes and their prime attributes, methods and relationships

26 CHAPTER 3. IMPLEMENTATION

get noti�ed once the selection state of associated values changes. Public methods

such as toggleSelect(. . .), select(. . .), unselect(. . .) and unselectAll(. . .)

allow the chart objects to change the selection state of passed values. It has been

put emphasis on the performance of the model as it might have to process large

amount of data.

When an user selects a value in a chart, it is not su�cient to just inform all

chart objects containing related values about the event so that these values get

highlighted. But it is also necessary to store the IDs of all selected and related

values as the following example, illustrated in �gure 3.6, shall justify:

Figure 3.6: Exemplary relationships and selection states

a) Given three values 1, 2 and 3 where each of the �rst two is related to the last

one.

b) When value 1 gets selected by the user, the related value 3 gets selected, too.

c) If value 2 gets selected afterwards, the likewise related value 3 does not change

its state as it is already selected.

d) Once the �rst value gets unselected, it is not possible to just unselect all of

its related values—that is value 3—because they might be bound by another

selection—value 2 in this example.

a) Value 3 has to stay selected as long as one or more related values are selected.

Not until value 2 gets unselected, the third one can revert to its initial state.

As usual, there exist many ways to accomplish this task, so multiple approaches

have been considered.

1. Maintain a set of IDs of selected values and furthermore a set for each related

value containing IDs of associated (selected) values. However, JavaScript

does not have a set data type and an own implementation leads to a certain

overhead. Moreover, a lot of set objects would be necessary.

3.3. CLIENT 27

2. Maintain two arrays, one for selected values and one for selected related

ones. As arrays are dynamic in JavaScript and behave similar to list known

from other programming languages, it is easy to add and remove IDs. Be-

yond that, arrays may contain duplicates which allows to insert related val-

ues multiple times re�ecting the relationship to multiple values. In contrast

to a custom set implementation native arrays bene�t much more from inter-

nal optimizations by web browsers.

The previous approaches have got a disadvantage in common: as the IDs are only

grouped by type (selected and selected related), all chart objects get informed about

changes on every value regardless whether the value is associated to the parame-

ter the particular chart visualizes or not. So a lot of data is unnecessarily processed

by the chart objects which has a perceptible negative impact on the overall per-

formance. For this reason, two arrays analogous to the second approach above

are maintained, but now for each single parameter. The select method gets passed

ValueMeta objects that contain, beside the numeric id and lists of relations, a ref-

erence to the parameter the value belongs to. The relations are already grouped

by parameter due to an adjusted API. All this allows much more speci�c noti�ca-

tions of the chart objects that generally only register for one parameter. The ob-

servers get passed a SelecionEvent that contains, apart from a type indicator and

a timestamp, a complete list of value IDs that are a�ected. This corresponds to the

push approach of the observer pattern. The pull variant, by which the observers

call themselves for the desired data, is unsuitable for requesting IDs of values that

have been unselected as they do not exist in the model afterwards. Also a pursuant

computation by the chart objects seems to be unreasonable.

The implemented approach based on the use of simple arrays also shows a

weakness: operations that test the existence of a value in an array are expensive

in comparison with sets. However, this merely has a negative impact on the rarely

called _unselectRelated(. . .) method that needs to test whether an unselected

related value is still referenced by another selected value. The usually more often

executed methods select(. . .) and unselectAll(. . .) are unconcerned and pro�t

from the simple structure. To sum up, approaches using sets perform much better

on a rarely called method, but are slower on other more signi�cant operations.

Further arrangements improve the runtime of the SelectionModel’s methods.

Most jQuery methods that have been used in an early state of development, in-

cluding jQuery.each() and jQuery.inArray(), are replaced by native equiva-

lents which, admittedly, are not always supported by old browsers like the Inter-

net Explorer 8. Some more changes listed in �gure 3.7 improve the performance

additionally.

28 CHAPTER 3. IMPLEMENTATION

Worse Be�er

a1 = a1.concat(a2) Array.prototype.push.apply(a1, a2)

o1[o2.toString()] o2[o1.type][o1.id]

Figure 3.7: Quality of statements with regard to performance

3.4 Charts

The diverse chart types form the essential part of this work as they visualize data

in a variety of ways for di�erent purposes. All charts have in common that they

illustrate relationships between values and that they look and behave similar in

order to provide a consistent user experience.

Once the user clicks on a single value or an aggregation (such as a bar of a his-

togram), it gets highlighted together with all related values. Pressing the control

key while clicking allows to select further values without loosing former selec-

tions. It also enables toggling which means that selected values get unselected

and vice versa.

As mentioned, all charts inherit from a base class and share the same selection

model. Furthermore, they each have one single parameter of the analyzed program

associated. The chart construction always follows a similar pattern: �rst, a Han-

dlebars.js template de�ning the basic DOM structure is evaluated and rendered,

before the server API is requested and the actual chart is created. Selected values

are highlighted in orange, while related ones are marked in red. This is usually

done by setting a DOM class that applies a CSS rule.

In the following, the di�erent chart types are described more elaborated putting

emphasis on the characteristic features of each one. In regard to highlighting only

the select operation of single values is explained as unselecting speci�c or all values

works analogously or is not noteworthy.

3.4.1 Table

The table is the most basic visualization type of this work and supports both num-

bers and strings. It represents the plain data processed by the analyzed program

without further manipulation. It copes best with large data sets and is suitable for

getting a detailed insight. The table is resizable and unselected rows can be hidden.

The implementation is based on the jQuery library DataTables whereby some ar-

ti�ces had been necessary to get it work as desired.

3.4. CHARTS 29

Figure 3.8: Table showing sample data with enabled hiding of unselected rows

Deferred rendering and performance

Backed by DataTables, only the visible part of the table plus a small o�set on ei-

ther side gets drawn which includes the creation of corresponding DOM elements.

While scrolling the content gets updated with data received by further API re-

quests. Due to this deferred rendering the client’s overall performance stays ap-

proximately constant independently from the size of the data set.

Additional improvement of performance has been achieved by caching the IDs

of currently drawn values respectively DOM nodes. This allows �ltering of IDs

when receiving an update by the selection model in order to prevent trials to ac-

cess non-existing nodes for highlighting. As DOM operations are comparatively

expensive, it is worthwhile to keep their amount as low as possible.

Data

Since the structure of the data returned be the API does not conform to the for-

mat required by DataTables, it gets transformed as shown in �gure 3.9. Because

DataTables does not support the annotation of meta data, such as IDs and relation-

ships, for individual cells, those data is assigned to the respective row. Afterwards,

a callback function executed for each cell attaches the meta data to the cell node

using the jQuery method data().

Hiding of unselected rows

Especially for large tables it might be hard to observe all relevant rows that cur-

rently contain selected values. So an option to hide all unselected rows, which can

30 CHAPTER 3. IMPLEMENTATION

{

"0": { // first container respectively row

"a": {

"relations": { /* relations of a */ },

"id": 3,

"value": "1"

},

"b": {

"relations": { /* relations of b */ },

"id": 4,

"value": "2"

},

"c": {

"relations": { /* relations of c */ },

"id": 5,

"value": "3"

}

}

}

[

{ // first container / row

"a": "1",

"b": "2",

"c": "3",

"DT_C_relations": [

{ /* relations of a */ },

{ /* relations of b */ },

{ /* relations of c */ }

],

"DT_C_ids": [

3,

4,

5

]

}

]

Figure 3.9: Part of the raw API response (left) and corresponding postprocessed data

(right)

be activated by the user, has been implemented.

The IDs of all selected values o�ered by the selection model are passed to the

API for �ltering. As DataTables lacks a way to manually trigger a custom call to the

server, its search feature has been assigned to this task. Special search keywords

identify desired actions allowing to adapt the request parameters or to clear the

table if no values are selected. This kind of workaround works properly, especially

as the very search feature is not activated due to missing support by the server

API.

Resizing

The user may change the height of the table by intuitive dragging, while the width

is adapted to the content by DataTables. After the table’s height has been changed

with the help of a jQuery UI widget, DataTables properties get recalculated and

adjusted correspondingly.

3.4.2 Sca�er Plot

A scatter plot displays numeric value pairs in a two-dimensional Cartesian co-

ordinate system resulting in a point cloud. Before the plot is rendered, the user

may choose two subscripts de�ning the horizontal and vertical axis. Moreover,

the point size and the overall dimensions of the scatter plot are con�gurable. The

3.4. CHARTS 31

points get drawn semi-transparent allowing to recognize accumulations which

yield darker areas. It is not only possible to select single points by mouse click,

but also using a so-called brush to select areas containing several points.

As a point represented by a DOM element is generated for each value pair and

due to the large impact of the DOM tree’s size on the overall performance of the

application and web browser, the scatter plot is less suitable for very large datasets

compared to the other chart types .

The SVG graphic representing the scatter plot is generated with the aid of D3.js.

Figure 3.10: Scatter plots of two large datasets with each more than 25,000 points

whereby the gray area contains a huge amount of value pairs selected by a brush

Overall construction

The creation of new DOM elements, such as the points, is done as described in the

introduction of D3.js in sub section 2.4.2.

Understandably, the coordinates of the points correspond to the values of the data-

set obtained by the server API. In order to map from the input domain de�ned by

these values to the output range de�ned by the desired dimensions of the plot,

D3.js provides scale functions. Furthermore, D3.js’s axes component displays ref-

erence lines and takes care of human-readable tick values. After all, the library

makes the construction really straightforward.

32 CHAPTER 3. IMPLEMENTATION

Filtering

Once the scatter plot objects receives a selection event, including the IDs of recent

selected or unselected values, the point DOM elements are �ltered accordingly. A

�lter method provided by D3.js is not used for this purpose as its runtime is insuf-

�cient for large datasets. Instead, a custom and more adjusted approach is applied

which makes use of the knowledge that each value ID has only one associated

DOM element. Moreover, converting the array of IDs to a set-like object notably

speeds up tests whether a value is contained.

Bringing points to the front

Especially for large datasets points might overlap and hide each other. This is a

problem as soon as a partly or completely covered point gets selected as it would

not be visible for the user. For HTML documents the CSS property z-index helps

as it speci�es the z-order to determine which element covers the other. However,

this property does not work on SVG graphics where only the order of elements in

the DOM tree de�nes the z-order. The later an element appears in the DOM tree,

the further up it gets positioned. So in order to bring an element of a SVG graphic to

the front, it has to be moved to the end of the respective DOM sub tree. If hundreds

or thousands of points get selected at once, the required reordering would be a too

expensive operation. As reasonable compromise, elements only get brought to the

front if doing so is not necessary for more then 50 elements. That ensures that for

small selections with less than 51 points involved all relevant points get visible,

whereas it is usually negligible for larger selections if some points are covered.

Brush selection

D3.js’s brush control allows to span a rectangle in order to select underlying points.

However, as the control only returns a value extent indicating the rectangle’s cover

in both horizontal and vertical direction, the points have to be �ltered manually.

Combining single point and brush selection so that a mouse click selects a sin-

gle point, while mouse dragging spans the rectangle, is not easily possible due to

the functional principle of the brush control. Instead, the brush selection can be

toggled by a checkbox below the plot that is deactivated by default.

3.4.3 Histogram

A histogram visualizes the distribution of values by grouping them into bins. Bins

are illustrated as rectangular bars whose size show the frequency of values over

discrete intervals. The user has to select a variable �rst and might adjust the num-

ber of bars as well as the overall dimensions. Afterwards, the calculated histogram

3.4. CHARTS 33

appears animating the increase of each bar’s height. The bars are colorized de-

pending on how much of their contained values are selected: the more the darker.

Furthermore, the bar size can be displayed optionally, and tool tips show further

information about bins on hovering if desired.

This chart type also makes use of D3.js and requires an additional Aggregation-

Model to determine the share of selected values per bin.

Figure 3.11: Two sample histograms demonstrating prime features of this chart type

such as the bar size indicator, dependent highlighting and tool tips

Overall construction

Thanks to a so-called histogram layout by D3.js the construction is not that com-

plicated as the library calculates the bins and associates appropriate values.

Number of bars The desired amount of bars respectively bins is usually merely

regarded as a hint because D3.js uniformly spaces the value domain so that the

interval values are human-readable. So for instance, a single bin might cover the

interval [10, 20] instead of [8.284, 20.653]. As a result, the resulting amount of bins

may be less or more than set. Typically, the exact amount does not matter for the

user, but if so, it can be enforced optionally. In that case, the intervals are set every

value extent

number of bins
units yielding non-integer values in most cases.

34 CHAPTER 3. IMPLEMENTATION

Tool tips

Small info boxes, called tool tips, show additional information for each bin on

mouse hovering. They are implemented using the plugin d3.tip
1

and a Handlebars

template, and can toggled by clicking on a checkbox below the histogram. The

tool tips display the following details:

• Bin extent — the bin’s lower and upper bound

• Bin size — the bin’s frequency respectively the number of contained values

• Selected / related — the number and share of contained values that are se-

lected

• Value extent — the minimum and maximum contained value (has not to cor-

respond to the bin’s extent necessarily)

• Mean — the average of all contained values

• Quartiles — the 25, 50 and 75 percent quantiles indicating the value distri-

bution inside the bin. For instance, the 25 percent quantile is the value such

that 25 % of the values are smaller. The 50 percent quantile is called median.

Highlighting and performance

Once the histogram object is informed about new selections by the selection model,

it has to �nd involved bins by grouping the recent selected values’ IDs accordingly.

An obvious approach applies two nested loops to iterate over the IDs s of selected

values and over the IDs b of all values contained by bins. However, its quadratic

complexity of O(|s| · |b|) is not satisfactorily. Instead, an improved method with a

complexity of O(|s|+ |b|) has been implemented that makes use of a set-like data

structure. An intersection operation �nds all IDs that are contained by a bin, while

a di�erence operation detects all IDs that still require an association. Intersection

and di�erence are calculated in the same iteration.

When the user clicks on a bar, the contained values’ IDs are passed to the

selection model that in turn informs the histogram object about the selection. In

that case, it is not necessary to search for associated bins as the single bin involved

gets cached once the user selects it.

Once all involved bins are known, they are passed to the aggregation model

together with associated value IDs. The model updates its state and noti�es the

histogram including the bin statuses, so they �nally get highlighted.

1http://labratrevenge.com/d3-tip/

http://labratrevenge.com/d3-tip/

3.4. CHARTS 35

3.4.4 Line Mosaic Plot

The line mosaic plot, based on the article [Huh04b], is the most sophisticated and

complex chart type of this work and allows to recognize relationships among cat-

egorical variables. Just like conventional mosaic plots, it visualizes so-called con-

tingency tables where each cell contains the frequency respectively count of a

distinct value combination. In traditional plots each cell is displayed as a rect-

angle whose dimension corresponds to the respective frequency. However, this

kind of plot might be misleading and confusing as it is di�cult to compare rect-

angle sizes, especially if they vary in aspect ratio. Moreover, missing alignment

of columns and rows in conventional plots makes an interpretation even harder.

These disadvantages do not apply to the line mosaic plot as it consists of lines

split inside uniform boxes, referred as cells, instead of di�erent-dimensioned rect-

angles. The line lengths correspond to each cell’s frequency and are adjusted to

the cell with maximum count. If a variable has been chosen as "target", each cell

contains di�erent-colored lines for each value (if any) of the target variable.

The user may select one or more variables, optionally including one target, and

can set the overall dimensions as well as the lines’ width and spacing. If desired,

tool tips show additional information.

Figure 3.12: Two line mosaic plots visualizing the often-cited dataset of the passen-

gers on the sunk Titanic grouped by class (�rst, second, third, crew), gender (male, fe-
male), age (adult, child) and whether alive (yes, no). On the right plot, the variable alive
has been selected as target. Among other things, it is recognizable that the chance of

survival depends on the class.

36 CHAPTER 3. IMPLEMENTATION

Functional principle and implementation, including some optimizations, cor-

respond to those of histograms to a great extent. The computation of the con-

tingency table is adopted from [Huh04b] with small modi�cations, whereas own

partly complex calculations determine positions and sizes of the plot elements.

The fact that an arbitrary amount of variables can be used proves the powerful-

ness of all algorithms and formulas. Again, D3.js is used to draw the resulting SVG

graphic.

Overall construction

The basis for the construction is the calculation of the contingency table as de-

scribed in [Huh04b]. Unfortunately, some of the presented formulas are a bit de-

fective and had to be corrected �rst. For this purpose, a concrete example in the

underlying article as well as the inspection of the source code of the visualization

tool eDAVIS
2
, described in [Huh04a], has proved bene�cial. Figure 3.13 shows the

revised formulas without further explanation. Besides, the article gives a formula

to calculate the size of gaps between cells in both horizontal and vertical direction.

They vary in order to simplify perception.

page 4: I =

bp/2c∑
i=1

(v2i − 1)

bp/2c∏
j=i+1

n2j +
1︷ ︸︸ ︷

��
��v2bp/2c

J =

b(p−1)/2c∑
i=0

(v2i+1 − 1)

b(p−1)/2c∏
j=i+1

n2j+1 +

1︷ ︸︸ ︷
((((

(((v2b(p−1)/2c+1

page 5: Mod(x, y) = x−
y︷︸︸︷
�x ·

⌊
x

y

⌋

vi =


1 +

 I

+1︷︸︸︷
∏bp/2c

j=bi/2c+1
n2j

 , i = 2, 4, . . . , 2bp/2c − 1

[. . .], [. . .]

and apply Mod(vi, ni)

Figure 3.13: Revised formulas concerning [Huh04b]

Dimensions After the contingency table and the size of gaps are calculated as

mentioned, further dimensions need to be determined, beginning with the width

2http://stat.skku.ac.kr/myhuh/DAVIS.html

http://stat.skku.ac.kr/myhuh/DAVIS.html

3.4. CHARTS 37

of single cells wrapping the lines. As recognizable in �gure 3.14, the cell width can

be estimated (ignoring labels) by:

total width− total horizontal gaps

number of columns

However, this might lead to non-integer values which is not suitable for a clean

rendering. Moreover, this simple approach does not ensure that all lines �t per-

fectly into the cells with given line width and spacing.

Therefore, the number of lines that entirely �t into a cell, wide as calculated above,

is determined. If a target variable has been de�ned, however, the amount of re-

quired lines might increase as cells are usually not tightly packed. Finally, the cell

width is adopted to the maximum need of lines. The overall plot width gets up-

dated accordingly, while all other user-de�ned dimensions remain una�ected.

Further straightforward computations determine heights and label dimensions.

label A

label X label Y label X label Y

label B

la
be

l V
la

be
l U

line width line
spacing

total width

total height

label size

horizontal gaps

vertical gap

cell border
width

Figure 3.14: Construction scheme of a line mosaic plot

Lables The cell labels denote a variable value for one or more columns respec-

tively rows, as discernible in �gure 3.14. What makes computation complex is the

circumstance that the size of gaps between cells varies and that the amount of la-

bels depends on the values. The essence of the implemented algorithm is that it

determines how much cells and gaps each label spans which allows to shift it to

the proper position. The spanned area is equal for each label corresponding to a

38 CHAPTER 3. IMPLEMENTATION

value of the same variable. Figure 3.15 shows a highly simpli�ed extract of the

iterative algorithm in pseudo code. It calculates a coordinate of the label’s center

in either horizontal or vertical direction.

cumulatedGaps← calculate cumulated sum for each gap;

foreach variable v do
spannedCells← get total size of cells that each label spans;

spannedGaps← get toal size of gaps that each label spans;

spannedTotal← spannedCells+ spannedGaps;

foreach label of v with index i do
leftGapIndex← calculate index of gap left to the label;

coordinate← (i+ 0.5) · spannedTotal
+(cumulatedGaps[leftGapIndex] or 0)
− i · spannedGaps;

// do something with the coordinate, e. g. render the label text

end
end

Figure 3.15: Calculation of the coordinate de�ning a label’s center whereby the al-

gorithm works in both horizontal and vertical direction

Tool tips

The tool tips work analogous to those of histograms and show the size and selec-

tion state for each cell respectively line group. Additionally, the associated values

are listed. As those do not arise while the contingency table is calculated, they

need to be determined by a further algorithm given in the underlaying article.

3.5 Fine-tuning

In order to increase the quality of the developed software, it has been analyzed and

optimized.

3.5.1 Memory Leaks

The responsible use of memory is an important aspect, especially if dealing with a

large amount of data and complex charts. In contrast to most low-level program-

ming languages, such as C, JavaScript does not allow to explicitly allocate and free

memory. Instead, memory is allocated when objects are created and freed if they

are not needed respectively used anymore. This is done by a garbage collector

that usually considers an object as not needed if it is not referenced by another

3.5. FINE-TUNING 39

object. Memory is called leaking when the garbage collector is not able to release

memory of actually unused objects. This might happen if not all references have

been removed and particularly if multiple objects contain cross references to each

other.

In this work, partly serious memory leaks occurred when a chart was removed

by the user. Although the sole reference to the chart object has been deleted and

all corresponding DOM nodes have been removed, not all memory previously re-

quired by the chart was freed. The developer tools of the web browser Google

Chrome showed that most of the chart’s DOM nodes were still part of a detached

DOM tree and therefore kept in the JavaScript heap. Even though not being able to

reconstruct all causes for this leaks, they have been resolved. Before the reference

to a chart object gets deleted, not only the chart’s root node gets removed. Prior

to this, large DOM subtrees are removed explicitly and some object properties are

set to null.

It seems likely that internal caching mechanisms of jQuery have a share in the

memory leaks. De�nitely some messages logged to a browser console for debug-

ging cause leaking which is why all logging statements get removed by RequireJS

for the �nal code.

Figure 3.16 shows the result of this e�ort. First, a chart—a line mosaic plot in

this example—is created causing the use of memory by the JavaScript heap and

the number of DOM nodes to increase. Once the user removes the chart, it gets

removed immediately from the browser’s view. However, the use of memory does

not change a lot, but only when the garbage collector is executed. The fact that the

heap size and amount of nodes are approximately the same before and after the

chart’s existence demonstrates that no or less memory is leaked. If a memory leak

existed, the consumption of memory would not decrease that much once garbage

is collected.

chart creation

chart removal
(incl. seings form)

garbage collection

JavaScript heap

DOM Nodes

added chart
seings form

time →

Figure 3.16: Timeline showing the heap size and number of DOM nodes in memory

while a chart gets created and removed (recorded with Google Chrome 37)

40 CHAPTER 3. IMPLEMENTATION

3.5.2 Validation

While the JavaScript code has been checked by JSHint, the markup of the resulting

website including the charts has been validated by the World Wide Web Consor-

tium’s (W3C) validation service
3
. Merely the use of a HTML5 data attribute on

SVG elements, required for highlighting of histogram and line mosaic plot ele-

ments, is faulted. As it works on all modern browsers nevertheless and because an

alternative approach would be disproportionately e�ortful regarding implementa-

tion and runtime, this kind of �aw is accepted.

3http://validator.w3.org/

http://validator.w3.org/

Chapter 4

Conclusion and Outlook

4.1 Conclusion

The implementation of a browser-based interface for provenance analysis pro-

vided by the given analysis tool has been successful. The resulting implemen-

tation works well and allows the user to choose from four di�erent chart types,

each having merits of its own. Thanks to numerous optimizations in nearly every

component the size of datasets that can be processed has been increased. More-

over, the application is extensible by further chart types due to a well-conceived

structure and an universal server API.

The fact that the charts are generated on client-side in a web browser that

furthermore has to handle relationships and highlighting, however, sets certain

limits in regard to the amount of processible data. The interface has successfully

been tested with a dataset of about 44,000 tuples, but a much higher amount would

probably overstrain the e�ciency of web browsers on common computers.

4.2 Future Work

Sca�er plot e�iciency Displaying single value pairs the scatter plot might lead

to the creation of a large amount of DOM elements representing the points. This

has a great in�uence on the overall performance of the whole interface and in-

volves that the scatter plot copes worse than any other chart type with mass of

data. In order to massively reduce the number of DOM elements, points that cover

or are located next to each other could be combined respectively accumulated.

Waiting indicator When an user clicks on a chart element, such as a bar of

a histogram, in order to select values it might take some moments until all high-

lighting is calculated and displayed. Indicating that the application is still working,

42 CHAPTER 4. CONCLUSION AND OUTLOOK

for instance by changing the mouse cursor to a waiting symbol, would probably

satisfy the user.

Communication layer In the current implementation the client application

processes the API responses directly what implies that all client components such

as the several chart classes are adjusted to that speci�c interface. Therefore, modi-

�cations of the API’s parameters or of the structure of its responses would require

an adaption of many di�erent parts of the client software. The introduction of an

additional communication layer that requests the API and that passes the maybe

post-processed response to other components would bring more �exibility. If the

API was changed or replaced, merely that layer would require an adaption.

API extension The library DataTables, used for the implementation of the table,

allows to sort columns by clicking on the respective column heading. Moreover,

a search �eld simpli�es tracing of speci�c values. Currently, the API does not

support sorting and searching which is why these DataTables features are not en-

abled. By extending the API an enhancement of usability and functionality would

be achieved.

4.3 Outlook

Currently, the analysis tool by the Database Research Group at the University of

Tübingen computes data provenance concerning Python programs. This is con-

sidered as a �rst step towards the actual aim of analyzing SQL queries that con-

ceivably get initially translated into equivalent Python programs. The graphical

interface elaborated in this work might get extended and adapted to this altered

purpose.

Bibliography

[Wei81] Mark Weiser. “Program Slicing”. In: Proceedings of the 5th International
Conference on Software Engineering. ICSE ’81. Piscataway, NJ, USA:

IEEE Press, 1981, pp. 439–449.

[KL88] B. Korel and J. Laski. “Dynamic Program Slicing”. In: Information Pro-
cessing Letters 29.3 (Oct. 1988), pp. 155–163.

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. “Why and

Where: A Characterization of Data Provenance”. In: Proceedings of the
8th International Conference on Database Theory. ICDT ’01. London,

UK, UK: Springer-Verlag, 2001, pp. 316–330.

[Huh04a] Moon Yul Huh. “eDAVIS: An Enhanced Data Visualization System”.

2004.

[Huh04b] Moon Yul Huh. “Line Mosaic Plot: Algorithm and Implementation”.

In: COMPSTAT 2004 — Proceedings in Computational Statistics. Ed. by

Jaromir Antoch. Physica-Verlag HD, 2004, pp. 277–285.

[al11a] World Wide Web Consortium (W3C) et al. Cascading Style Sheets Level
2 Revision 1 (CSS 2.1) Speci�cation (W3C Recommendation). June 7,

2011. url: http://www.w3.org/TR/2011/REC- CSS2- 20110607/

(visited on 08/05/2014).

[al11b] World Wide Web Consortium (W3C) et al. Scalable Vector Graphics
(SVG) 1.1 (Second Edition) (W3C Recommendation). Aug. 16, 2011. url:

http://www.w3.org/TR/2011/REC-SVG11-20110816/ (visited on

08/06/2014).

[BOH11] Michael Bostock, Vadim Ogievetsky, and Je�rey Heer. “D3: Data-

Driven Documents”. In: IEEE Transactions on Visualization and Com-
puter Graphics 17.12 (Dec. 2011), pp. 2301–2309.

[Int14] T. Bray from Internet Engineering Task Force. The JavaScript Object
Notation (JSON) Data Interchange Format. Mar. 2014. url: https://

tools.ietf.org/html/rfc7159 (visited on 08/05/2014). Archived by

WebCite®at http://www.webcitation.org/6RbJiw80d.

http://www.w3.org/TR/2011/REC-CSS2-20110607/
http://www.w3.org/TR/2011/REC-SVG11-20110816/
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
http://www.webcitation.org/6RbJiw80d

44 BIBLIOGRAPHY

[Mic14] Microsoft. SVG vs canvas: how to choose. 2014. url: http://msdn.

microsoft.com/en- us/library/ie/gg193983.aspx (visited on

08/06/2014). Archived by WebCite®at http : / / www . webcitation .

org/6RcvwTtT2.

[WW14] World Wide Web Consortium (W3C) and Web Hypertext Application

Technology Working Group (WHATWG). HTML5 (W3C Candidate
Recommendation). July 31, 2014. url: http://www.w3.org/TR/2014/

CR-html5-20140731/single-page.html (visited on 08/05/2014).

http://msdn.microsoft.com/en-us/library/ie/gg193983.aspx
http://msdn.microsoft.com/en-us/library/ie/gg193983.aspx
http://www.webcitation.org/6RcvwTtT2
http://www.webcitation.org/6RcvwTtT2
http://www.w3.org/TR/2014/CR-html5-20140731/single-page.html
http://www.w3.org/TR/2014/CR-html5-20140731/single-page.html

List of Figures

1.1 Scheme of the overall interface . 2

2.1 Diagram of database tables holding provenance analysis results . 6

2.2 Abstract illustration of the value and provenance database tables . 7

3.1 Overall client–server setup . 19

3.2 Forward relationships . 21

3.3 Join graphs for relationship derivation 21

3.4 Attempts to create multi-dimensional structures in SQL 23

3.5 UML diagram of the client application 25

3.6 Exemplary relationships and selection states 26

3.7 Quality of statements with regard to performance 28

3.8 Sample table chart . 29

3.9 Raw API response and postprocessed data 30

3.10 Sample scatter plots . 31

3.11 Sample histograms . 33

3.12 Sample line mosaic plots . 35

3.13 Revised formulas . 36

3.14 Construction scheme of a line mosaic plot 37

3.15 Algorithm calculating a label’s position 38

3.16 Timeline showing heap size and number of nodes 39

46 LIST OF FIGURES

List of Code Listings

2.1 Sample Python program . 4

2.2 Extension of the prior program . 5

2.3 Sample JSON document . 8

2.4 Sample JavaScript programm . 10

2.5 Sample HTML5 document . 11

2.6 Sample style sheet . 12

2.7 Sample HTML document with inline SVG 12

2.8 Core concept of D3.js . 15

3.1 Exemplary response to /api/calls 22

3.2 Exemplary response to /api/values 22

48 LIST OF CODE LISTINGS

Appendix A

CD-ROM Content

The CD-ROM attached to this thesis contains especially the following folders and

�les. Not all deep levels of the directory structure are listed.

application developed application

release/ esp. �nal code for release

assets/ compressed main client application �les

con�g.ini database credentials & server settings

index.html main HTML �le

provis_server.py . . . main server component

README.md setup and startup instructions

development/ esp. raw code �les

assets/ main client application �les

img/ graphic �les

js/ JavaScripts

styles/ SCSS style �les

templates/ Handlebars.js templates

doc/ JSDoc documentation website

vendor/ third-party JavaScripts

Grunt�le.js Grunt tasks

package.json Node.js dependencies & meta data

prepare-database.sql . PostgreSQL database preparation script

setup-build.sh Node.js setup assistance

[. . .] further �les analogous to ../release/
thesis-provis-bettinger.pdf . . . this thesis document

50 APPENDIX A. CD-ROM CONTENT

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich diese schriftliche Abschlussarbeit selbständig verfasst

habe, keine anderen als die angegebenen Hilfsmittel und Quellen benutzt habe und

alle wörtlich oder sinngemäß aus anderen Werken übernommenen Aussagen als

solche gekennzeichnet habe.

Tübingen, 30. September 2014

Janek Bettinger

	Introduction
	Provenance Analysis
	Aims
	Interface
	Document Structure

	Fundamentals
	Data Provenance
	Program Slicing

	Provenance Analysis Tool (PAT)
	Sample Program
	Database Structure

	Languages and Formats
	Server-side
	Communication Layer
	Client-side

	Tools, Libraries and Frameworks
	Server-side
	Client-side
	Development

	Implementation
	Setup
	Server
	Database Preparations
	Application Programming Interface (API)

	Client
	Overall Structure
	Selection Model

	Charts
	Table
	Scatter Plot
	Histogram
	Line Mosaic Plot

	Fine-tuning
	Memory Leaks
	Validation

	Conclusion and Outlook
	Conclusion
	Future Work
	Outlook

	Bibliography
	List of Figures
	List of Code Listings
	CD-ROM Content

